Cluster-robust inference with a single treated
cluster using the t-test”

Chun Pong Lau' Xinran Li¥
November 7, 2025
Abstract

This paper considers inference when there is a single treated cluster and a fixed
number of control clusters, a setting that is common in empirical work, especially in
difference-in-differences designs. We use the t-statistic and develop suitable critical
values to conduct valid inference under weak assumptions allowing for unknown
dependence within clusters. In particular, our inference procedure does not involve
variance estimation. It only requires specifying the relative heterogeneity between the
variances from the treated cluster and some, but not necessarily all, control clusters.
Our proposed test works for any significance level when there are at least two control
clusters. When the variance of the treated cluster is bounded by those of all control
clusters up to some prespecified scaling factor, the critical values for our t-statistic
can be easily computed without any optimization for many conventional significance
levels and numbers of clusters. In other cases, one-dimensional numerical optimiza-
tion is needed and is often computationally efficient. We have also tabulated common
critical values in the paper so researchers can use our test readily. We illustrate our

method in simulations and empirical applications.
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1 Introduction

In difference-in-differences designs, it is common for researchers to conduct inference us-
ing cluster-robust methods to account for correlation within clusters. However, inference
becomes challenging when there is only a single treated cluster. Intuitively, this is because
researchers are faced with only one estimate from the treated cluster, making its uncer-
tainty difficult to quantify. Existing methods either impose strong assumptions on having
a large number of clusters, require the variances to be homogeneous or estimable, or only
work for specific significance levels depending on the number of clusters. In this paper,
we develop a t-test associated with a suitable critical value to conduct valid inference that

relaxes these assumptions.

Having a single treated cluster and a finite number of control clusters is common in
empirical work. For instance, this can happen when researchers use data in the United
States to examine the impact of a policy that takes place in one particular state but not
the other states. The nearby states or the remaining states are commonly used as the
control group. In these scenarios, it is reasonable for researchers to believe they are not
in the scenario with a “large” number of control clusters. Some recent examples in this
context include Wang and Burke (2022) on the effect of payday loan regulations in Texas,
Harris and Larsen (2023) on the effect of Hurricane Katrina on student outcomes in New
Orleans, Dillender et al. (2023) on the effect of change in health care reimbursement rates
in Illinois, Alpert et al. (2024) on the impact of Kentucky’s prescription drug monitoring
programs on opioid prescribing, and Kumar and Liang (2024) on the labor market effects
of constitutional amendments in Texas. Hagemann (2024) has documented earlier related
examples in the context of a single treated cluster. In the next section of this paper, we
demonstrate that our test is also applicable to other empirical designs, in addition to
difference-in-differences.

This paper contributes to the literature on cluster-robust inference. We assume that the
number of clusters is fixed, as in some related work in this literature such as Bester et al.
(2011), Ibragimov and Miiller (2010, 2016), Canay et al. (2017), Hagemann (2022), and Lau
(2025). Although the tests in the aforementioned papers are valid when there is a finite
number of clusters, they are not suitable for the problem with a single treated cluster. The
first test requires certain homogeneity conditions, and the other tests cannot be applied
when there is a single treated cluster. Canay et al. (2021) has showed that Wild cluster
bootstrap popularized by Cameron et al. (2008) can be valid under strong homogeneity
conditions when there is a fixed number of clusters. See, for instance, Cameron and Miller
(2015), Conley et al. (2018), MacKinnon et al. (2023), and Alvarez et al. (2025) for some
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surveys on the literature of conducting inference with a fixed number of clusters.

Several tests have been developed to conduct inference when there is a single treated
cluster, but with assumptions that can be strong in practice. Conley and Taber (2011) as-
sume homogeneous errors. Ferman and Pinto (2019) relax the homogeneity assumption
and allow for known heteroskedasticity. Alvarez and Ferman (2023) relax the homogene-
ity assumption and allows for spatial correlation. All these tests assume that there is an
infinite number of control clusters. Our t-test neither assumes the variances are known
nor assumes an infinite number of control clusters. Recently, Hagemann (2024) develops
a novel rearrangement test that relaxes the assumptions mentioned earlier. Hagemann
(2024) is the most related paper in that his test relies on a relative heterogeneity condition
between the treated and control clusters. Both our test and Hagemann (2024) work with
a fixed number of clusters, allow for arbitrary correlation within clusters, and do not as-
sume that we can estimate or know the cluster variances. He shows his test is valid when
the relative heterogeneity condition holds with all or all but one control cluster. However,
the validity of his test depends on the number of clusters, the significance level, and the
relative heterogeneity condition. For example, when the standard deviation of the treated
cluster is bounded by 2 times all but one of the standard deviations of the control clus-
ters, Hagemann (2024) requires at least 14 control clusters to conduct a one-sided test at
the 2.5% level using his rearrangement test, and at least 17 control clusters are needed
for a 1% level test!. This potentially limits the applicability of his test. Among the cases
where his test is valid, he computes weights for his rearrangement test using numerical

optimization that lead to valid tests.

There are several important distinctions between our work and Hagemann (2024).
First, we show that our test can be valid for any choice of significance levels and hetero-
geneity parameters when there are at least two control clusters. For many conventional
combinations of significance levels and number of clusters, we derive a closed-form crit-
ical value for the t-test. No optimization is necessary for these cases, so researchers can
apply the test readily. For other cases, we can derive critical values that lead to valid
tests through one-dimensional optimizations. Therefore, our test can have broader ap-
plicability. Second, we relax the relative heterogeneity condition in Hagemann (2024).
Intuitively, the condition restricts the relative variance between the treated and control
clusters. Hagemann (2024) requires such condition to hold between the treated and all
(or all but one) control clusters to show the validity of his test. We weaken this condi-

tion by allowing the researcher to impose this restriction between the treated cluster and

1Equivalently, to conduct two-sided tests, there have to be at least 14 control clusters for a 5% level test.



any number of control clusters. This allows researchers to bound relative heterogeneity
on variances depending on their choice on how to restrict the amount of heterogeneity
between the treated and control clusters. Third, we allow for simultaneous inference
across all the relative heterogeneity assumptions that we impose. Specifically, under the
assumption of no treatment effect, we can infer the minimum amount of relative hetero-
geneity required to explain away the observed association between treatment and out-
comes. If the true relative heterogeneity is unlikely to exceed this amount, the treatment

is likely to have a significant nonzero effect.

While the t-test has been used in Bakirov and Székely (2006) and Ibragimov and Miiller
(2010, 2016), our proof on the validity of the t-test in the current context requires different
proof strategies. This is because we only have a single treated cluster and the relative

heterogeneity assumption imposes additional structure on the parameter space.

We confirm the performance of our proposed test in simulations. We find that our test
controls size under a wide range of significance levels and number of clusters. We also

have favorable power performance when compared to other tests in the literature.

The rest of the paper is organized as follows. Section 2 outlines some popular empir-
ical designs that our test can be applied to. Section 3 presents our inference procedure.
Readers interested in applying the test can refer to Algorithm 3.1. Section 4 presents our
main theory. Section 5 explains how our test can be easily used for simultaneous infer-
ence. Section 6 presents the simulation results. Section 7 contains two empirical studies.

Section 8 concludes. All proofs can be found in the supplementary material.

2 Motivating examples

We start by describing several empirically relevant designs that are common in applied
work and are related to the issue of having a single treated cluster. These examples show
that our method applies more broadly apart from standard difference-in-differences de-
signs. The first three examples have also been discussed in Hagemann (2024).

In the following, i € Z = {1,...,n} indices units, j € J = {1,...,m + 1} indices
clusters, and t € 7 = {1,...,T} indices time. Only cluster (m + 1) is treated, and the
remaining clusters are controls. Thus, J can be partitioned as Jy U J;, where Jy =
{1,...,m} and J; = {m + 1} denote the control clusters and treated cluster respectively.

Let D; = 1[j € J1] be a cluster-level treatment indicator across j € J.

As to be described in Section 3, we require researchers to be able to run regression



cluster by cluster, and write the estimator for the target parameter A in terms of the esti-
mator for parameters from cluster-level regressions, denoted by {51}7:51 The following
examples explain how to connect {(3]}7311 with the estimator for the target parameters in

common empirical designs.

Example 2.1 (Clustered regression). Consider the following model
Yi]' = ‘30 + AD]' + Ul-]-,

where Bo, A, U;; € R. Under the assumption that IE[U;;|D;] = 0, A can be estimated by

U 1 I
A :eerl _EZQ]/
j=1
where 5] is the sample mean of Y;; for each j € J. A

Example 2.2 (Difference-in-differences). Suppose T = 2 and let Post; = 1[t = 2] for all
t € T. Consider the following model

th =+ BPost; + AD]'POStt + U]-t, @)

where Uj; € R, and {tx]-};-”jll are the cluster fixed effects. Under the assumption that
E[Uj;|Dj, Post;] = 0, A can be estimated by

where {@}7:;1 are the differences in the outcomes before and after treatment. They can
be obtained as the estimates of {6, }721 from the following cluster-level regressions

Y]'t =+ QjPOStt + €jt (2)

foreachje J. A

Example 2.3 (Two-way fixed effects). Consider the following two-way fixed effects model:

th = o+ Bt + AD]'POStt + U]'t, 3)

where T > 2, {ocj}]’.”jll are the cluster fixed effects, {B;}L_, are the time fixed effects, and
Post; = 1[t > ty] for some 1 < ty < T. Under the assumption that IE[LIjt|Dj, Post;| =0,



A can be estimated by

using the same cluster-level regression as in (2). A

For more discussion about recent advances in difference-in-differences and two-way
tixed effects, see, for instance, the surveys by de Chaisemartin and D"Haultfceuille (2022),
Roth et al. (2023), and Baker et al. (2025).

Example 2.4 (Triple differences). Let C;j, D;; € {0, 1} be binary indicators that depend on
the individual i € Z and cluster j € J. Set D;; = 1[j = m + 1] and define Post; = 1[t = 2]
as in Example 2.2 with two periods. Assume for each j € J, there exist units with
Cij = 1 and units with C;; = 0. Consider the following triple differences/difference-in-

difference-in-differences model:

Yijt = Bo + [31Ci]- + ,BZDij + BsPost; + ﬁ4ci]'Di]-
+ ,35Ci]'POStt + ‘36DijPOStt + AcijDijPOStt + LI,'#.

(4)

Under the assumption that E[U;;|C;;, Djj, Post;] = 0, A can be estimated by

where {@\]}721 are the estimates of {9]-}7’:451 from the following cluster-level regressions
Yz’jt = + ')’C,jcij + ’)/Post,]'POStf + QjcijPOStt + €ijts

for each j € J. See Olden and Moen (2022) for a recent survey on triple difference

estimators. A

3 Inference procedure

In this section, we present the main assumptions and our algorithm of conducting infer-
ence using the t-test with a single treated cluster. Readers who are interested in applying
our test can directly apply Algorithm 3.1. We also present some brief intuition for the
validity of our test in Section 3.4 to facilitate the theoretical discussion in Section 4.



3.1 Assumptions

We follow the notation used in Section 2. Let {G)A]};“:JE1 be the cluster-level estimators,
Jo = {1,...,m} index the control clusters and [7; = {m + 1} index the treated cluster.

For simplicity, we make the dependence of {é\]};";{l on the cluster size implicit.

Our procedure requires two main assumptions. First, we assume that an appropriate
central limit theorem applies to {é}};’:{l as the sample size within each cluster, denoted by
n, goes to infinity. A similar assumption is also imposed in related papers on a fixed num-
ber of clusters, such as Ibragimov and Miiller (2010, 2016), Canay et al. (2017), Hagemann
(2022, 2024) and Lau (2025). Intuitively, this holds when each cluster has a large number
of units or consists of a panel with a long time periods. This high-level assumption is
formalized as follows.

Assumption 3.1. The following holds as the sample size within each cluster n — oco:

é\l — Ho
Vil —H N(0,3), (5)
Om — Mo
9m+1 — M
where ¥. = diag (03, ..., 00,05, ) is an diagonal matrix.

Below we give a few remarks regarding Assumption 3.1. First, it is not necessary for all
clusters to have the same size. In cases where clusters have varying sizes, we can define
n as the size of the smallest cluster, and our inference essentially requires the sample
sizes in all clusters to be large. Second, we assume that the cluster-level estimators are
independent, at least asymptotically, so that the asymptotic covariance matrix X in (5)
is diagonal. This is trivially satisfied if the units are independent across clusters. We
emphasize that, while we require independence across clusters, we allow for unknown
dependence structure within clusters. Third, we assume that the estimators from the
control clusters are consistent for a common parameter o, which can often be justified by

model assumptions or study designs as illustrated in Section 2.

Second, we impose the following relative heterogeneity assumption, which generalizes
the relative heterogeneity assumption in Hagemann (2024). Let 0(q) < o) < -+ < 0y
be the ordered values of {(T]-}]r.”:1 in Assumption 3.1.

Assumption 3.2. For a given p > 0 and a given k € {1,...,m}, o1 < 0.

The above assumption does not require the variances to be known. It only restricts the



relative heterogeneity of the standard deviations between the treated and control clusters.
In particular, for any p > 0 and k € {1,...,m}, it requires the standard deviation of
the treated cluster to be less than or equal to p times the standard deviations of at least
(m — k4 1) control clusters. For example, k = 1 requires that the standard deviation of
the treated cluster is smaller than or equal to p times the standard deviations of all control
clusters; when k = m, this means that the standard deviation of the treated cluster is

smaller than or equal to p times the largest standard deviation from the control clusters.

Assumption 3.2 is a relaxed version of Hagemann (2024)’s maximum relative hetero-
geneity assumption. His assumption is equivalent to Assumption 3.2 withk = 1ork = 2.
Our test allows a general choice of k € {1,...,m}. More importantly, as demonstrated
in Section 5, the inference can be simultaneously valid for all k € {1,...,m}. In other
words, with additional choices of k, our test can provide more evidences against the null

hypothesis than Hagemann (2024)’s test, which focuses on k = 1 or 2.

Before introducing our algorithm, we end this subsection with some discussion on
choosing (p, k) in Assumption 3.2. If the researcher believes the standard deviation of the
treated cluster cannot be larger than the standard deviations of the control clusters, then
the researcher cansetk = 1and p = 1.

On the other hand, if the researcher does not want to commit to a particular value of
(p, k), the researcher can perform simultaneous inference and report the largest value of
p such that the null can be rejected for each k. This approach can also be interpreted as
finding the largest p such that the conclusion changes, which is related to the idea of find-
ing breakdown points/frontiers in econometrics (Horowitz and Manski, 1995; Kline and
Santos, 2013; Masten and Poirier, 2020). We demonstrate this through two applications in

Section 7.
3.2 Algorithm
The goal is to test the following hypothesis:
Ho:ppy =po  vs  Hi:pg # po. (6)

Our procedure of conducting inference with a single treated cluster is as follows.
Algorithm 3.1.

Inputs:

e Significance level & € (0, 1).



e The parameters on relative heterogeneity from Assumption 3.2, i.e., (p, k).
e The cluster-level estimators {5]}7:51

Steps:

Step 1 (Test statistic): Compute the t-statistic:

~

@, 7)

Sm

>

T

where 0,, = L ;”:15] and $2, = L 2;71:1(@ — 0,,)? represent the sample average
and sample variance of the estimators from the control clusters, respectively.
Step 2 (Critical value): We have tabulated many empirically-relevant critical values in

Table 1. These critical values can be immediately used. More generally, the critical

value cvy, 4 k o can be computed as follows.

e Case 1: If k = 1 and « is below the thresholds in Table 2, use the closed-form
expression in (17). Compute the closed-form critical value as

/ 1
Cvm/“/krp = pz + a tm_ll%,

where £,,_; « is the (1 — 5)-th quantile of the t-distribution with (m — 1) degrees
of freedom.

e Case 2: Search cv,, 4 ko such that p,,(cv,, 4k 0; k, 0) defined in Theorem 4.3 ahead
k0 p k7 Kr P

is at most a. This requires solving one-dimensional optimization problems.

Step 3 (Decision): Reject (6) if |T,| > Vi p- [ |

3.3 Computing p-value and confidence interval

To compute the p-value, the researcher does not need to run the entire Algorithm 3.1. In
particular, the researcher only needs to compute the test statistic T}, in Step 1 of Algorithm
3.1 and substitute it into the p;, function in Step 2 of Algorithm 3.1 and return the p-value
as pu(Tus k, ).

The researcher can take the critical value cvy,; 4, from Step 2 of Algorithm 3.1 and

-~

return (0,41 — 0,) + CVm,pc,k,pS\m as an (1 — «) confidence interval for 1 — po.



3.4 Discussion

Algorithm 3.1 is a computationally simple three-step procedure. The first step is to com-
pute the usual t-statistic using the cluster-level estimators.

The second step finds the critical value that depends on (m, «, k, p). This step aims to
find the critical value cvy, 4k , such that the procedure controls size for any configurations
of {(7]-}7:51 that satisfy Assumption 3.2. In the first case, a closed-form critical value is
available when « is below a certain threshold in Table 2. If x does not satisfy the condition,
we can compute the critical value cvy, 44, in the second step through one-dimensional

optimization.

The reason for having a closed-form expression for the critical value in case 1 of Step
2 of Algorithm 3.1 is as follows. For k = 1 and any given (m, p), for a sufficiently small
significance level a (including many conventional choices), we find that the maximum
rejection probability over all configurations of {(Tj}]r.”jll is achieved when 07,1 = po; for
all j = 1,...,m. The proof is nontrivial and we explain the technical details in Sections
4. Knowing when the maximum rejection probability is achieved, we are able to derive a
closed-form expression for the critical value using properties of the t-distribution.

Case 2 of Step 2 is in fact a general version that holds for any (m, a, k, p). For a general
value of k € {1,...,m}, although we cannot find the exact configuration of {(Tj};.’gl that
achieves the desired level of rejection probability, we are able to substantially reduce the
set of possible values. In particular, there are at most m? possible cases for the worst-
case configuration of {c; ;7:51, each of which involves at most one unknown parameter.
Therefore, we can find the maximum rejection probability through one-dimensional opti-
mization. In addition, we have a good initial guess for the critical value. To facilitate the

use of the test in practice, we have tabulated many critical values for researchers” use in
Table 1.

The last step rejects if the absolute value of the test statistic is above the critical value.

4 Theory

In this section, we develop the theory that justifies the validity of Algorithm 3.1. In Section
4.1, we show that the large-sample behavior of the test can be studied via a fixed number
of normal random variables. In Section 4.2, we show the general theory on computing
the maximum rejection probability of the test statistic. This result is used to search for a
critical value such that the test is valid. We show in Section 4.3 that we can get a closed-
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form expression for the critical value as in Step 2 of Algorithm 3.1 when k = 1 and the
significance level is not “too large.” In Section 4.4, we discuss the power of our -test.

4.1 General framework with normal means

In this subsection, we show that under Assumption 3.1, studying the behavior of the t-
statistic in equation (7) of Algorithm 3.1 when n is large is equivalent to studying the
t-statistic of suitably defined (m + 1) normal random variables. Formally, consider the

following assumption on the normal random variables.

Assumption 4.1. Let {1/Jj};”:+11 be m + 1 independent random variables, where {; ~ N (0, (7].2)
for1 < j<mand i1 ~N(6,02, )

Compared to the notation in Section 3.1, {1[1]-}]’.”:1 above correspond to the m control

clusters and ;41 corresponds to the single treated cluster. As before, the above assump-
m+1
j=1

heterogeneous as long as they satisfy the relative heterogeneity assumption stated in As-

tion does not require us to know the variances {c;}"". The variances can be arbitrarily
sumption 3.2. Analogous to (7), we define the following ¢-statistic based on these normal

random variables: .
T, = 1Pm+; ¢m, 8)
m
where ¢, = 1 Y1 ¢ and §2, =L Y (4 — ¢,,)? denote the sample mean and vari-

ance for the control clusters, respectively.

The theorem below shows that, to achieve the desired size asymptotically, it suffices
to consider a stylized setting with normally distributed random variables. Note that Ty,
in (7) depends on the sample size within each cluster n implicitly. In addition, we allow
u1 and pg to vary with the sample size n as well, which can facilitate power investigation
under local alternatives.

Theorem 4.1. Let m > 2. Suppose that Assumption 3.1 holds, /n(pu1 — po) —> dasn — oo

m+1 -1/22
4

for some § € R, and the variances {(7].2 i

are not all zero. Then, forany c > Oand c # m

lim P[|T| > c] = P[|Tu| > ¢],

n—o00

where Ty, is the t-statistic defined in (9).

2We impose ¢ # m~ /2 to avoid the case where |T,,| has a positive point mass at c. This technical

requirement excluding a single value of ¢ generally does not affect the practical use of our test, since the
desired critical value at a usual significance level is greater than m~!/2. Specifically, as discussed later in
Remark 4.4, the rejection probability P[|Ty,| > c] for any ¢ < m~!/2 can be as large as 1, and the rejection
probability IP[|T,;| > c] for ¢ close to but larger than m~1/2 can at least be about 0.5.
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Note that in the asymptotics of Theorem 4.1, the limit is taken as n goes to infinity,
while the number of clusters (m + 1) is fixed. In addition, we allow a general ¢ for the
difference between 1 and pg to facilitate the later discussion on the power of the test. To
derive valid tests, it suffices to consider the case where y1; = 9 and 6 = 0. Specifically, to
derive large-sample valid t-test with a single treated cluster and a finite number of control
clusters, it suffices to test the following null hypothesis in the stylized setting with exactly

normal observations:
Hy:6=0 vs H;:6#0. 9)

In the remainder of this section, we will study valid t-test for (9) in this stylized setting.

Remark 4.1. If we are interested in an one-sided alternative, such as p; > o, we can
reject the null hypothesis if Ty, > ¢ for some ¢ > 0. Moreover, under the same condition
as in Theorem 4.1, limy e P[Ty > ¢] = P[Tyy > | = 1P[|T,u| > c]. Therefore, the critical
value for a level-a one-sided test can be derived from the critical value for a level-(2a)

two-sided test, for any a € [0, 1]. [ |

Remark 4.2. The setup in this paper also works when there is a single control cluster
and at least two treated clusters. All the results would follow by labeling the first m

clusters as the treated clusters and the (m + 1)th cluster as the control cluster. |

Remark 4.3. Although we focus on a fixed m, we discuss in Appendix A.3 on the behav-
ior of the test when m is large, where we derive a closed-form valid test and approximate
its power. |

4.2 Valid t-test

The key to constructing a valid t-test is to find an appropriate critical value cvy, 4k , for
Step 2 of Algorithm 3.1. This critical value cvy, 4k, has to be chosen such that for any
{(7]-};721 that satisfy Assumption 3.2, P[|Ty| > ¢V, 4, under the null hypothesis (9) is
less than or equal to a given significance level a. In the following, we will consider the

maximum rejection probability at any critical value c.

Note that when the treated standard deviation is much larger than the control stan-
dard deviations, i.e., ;11 > maxj<j<y, 0j, the rejection probability IP[|T,,| > c] will be
close to 1 for any ¢ > 0, under which we cannot derive a meaningful -test. Therefore,
Assumption 3.2 on the relative heterogeneity of {crj};.”:ﬁl is in some sense necessary.

For descriptive convenience, we introduce Sy, (k, p) to denote all possible standard de-

12



viations that satisfy Assumption 3.2 for a given m, p > Oand k € {1,...,m}>:

Sm(k,0) ={(o1,...,0m 0ns1) € ]R’gar1 Oyl < POy }- (10)

Using the above notation, our goal of finding the maximum rejection probability as de-

scribed above can be formalized as follows

pm(c;k,p) = sup Po[| | > c], (11)

(01T, 0 11) ESm (k,p)
where the [P notation with subscript 0 indicates that the null hypothesis (9) holds and
0 = 0. To conduct a valid test at any given significance level « € (0, 1), it suffices to find
the critical value ¢ such that p,(c; k, p) < a and ideally p;,(c; k, p) = a. On the other hand,
if the goal is to compute a p-value, then one can directly compute py, (| T |; k, p) without
searching for the required critical value as discussed in Section 3.3. That is, when we set

¢ to be the observed absolute value of the t-statistic, py(c; k, p) gives a valid p-value for
testing the null hypothesis in (9).

In the following, we consider two cases depending on the standard deviation for the
treated cluster 0y, 1. Section 4.2.1 considers 0,1 = 0 and shows that the corresponding
maximum rejection probability has a closed-form solution that can be easily computed.
Section 4.2.2 considers 0,1 > 0 and shows that we have an integral representation for
the rejection probability. This facilitates its numerical calculation at any given values of
{(T]-};-”:ng. However, directly evaluating the optimization problem in (11) generally results
in solving an m-dimensional optimization problem. We discuss how this can be reduced

to solving multiple one-dimensional optimization problems in Section 4.2.3.

421 Casel: oy, =0

When 0,11 = 0, regardless of the choices of the relative heterogeneity parameters p and
k, the control standard deviations {(Tj};.”:l can take arbitrary values in R%,. Moreover,
in this case, except for a multiplicative constant scaling factor of y/m in the t-statistic,
our t-statistic essentially reduces to a one-sample t-statistic, and our t-test is equivalent
to testing whether the mean of the control clusters is equal to zero. From Bakirov and
Székely (2006), we know that the maximum rejection probability with a zero ¢y, 1 has the

3With a slight abuse of notation, we also use {Uj}]’.”:ﬁl to denote generic values of the standard devia-

tions. Note that {Uj}]’-”;;l in Assumptions 3.1 and 3.2 represent the true (asymptotic) standard deviations
for all the clusters.
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following form:

(/ = DRu(c)

, 12
j— Rm(c) (12

pmo(c) = sup  Po[|Tw| >c]= max P

(01, 0m ) ERY Ry(c)<j<m
and 0,,11=0

[tj-1] >

2.2
mc;ﬂﬂcnfl’
with degrees of freedom (j — 1). In (12), the maximum rejection probability is obtained

where Ry, (c) = and ;1 denotes a random variable following the t-distribution
when the control standard deviations {Uj};.”:l are either zero or take some common pos-
itive value. It can be efficiently computed by calculating the tail probabilities of at most

(m — 1) t-distributions with various degrees of freedom.

It follows that when p = 0, we must have 0,41 = 0, and the maximum rejection
probability of our #-test becomes the same as (12), i.e., pu(c;k,0) = pyo(c) for any ¢ > 0
and k € {1,...,m}. Thus, in the remainder of this section, we focus on p > 0.

Remark 4.4. From (12) and as commented in Bakirov and Székely (2006), py0(c) = 1 for
0 <c<mY2and pyo(c) = 0.5 for c = m~1/2. Furthermore, by the right-continuous
property of distribution functions, we can verify that p,0(c) — 0.5 as ¢ approaches
m~1/2 from the right. These observations mean that, regardless of the values of p and k,
the maximum rejection probability of our t-test in (11) is 1 when 0 < ¢ < m~1/2, at least

0.5 when ¢ = m—1/2 1/2,

, and at least about 0.5 when c is greater than but close to m™
Thus, it is generally innocuous to assume ¢ # m~1/2 (or even ¢ > m~1/2) as in Theorems

4.1 and later in 4.3 for most conventional significance levels. [ |

4.2.2 Case?2: 0,1 >0

We now consider the case where 7,41 > 0. As shown in the following lemma, the re-
jection probability Pg[|T;,| > c| can be written as an integral. This not only facilitates
numerical computation, but is also crucial for our later theoretical investigation.

Ji
Om+1

Lemma 4.1. Suppose that 0,1 > 0, and define y; = fori =1,2,...,m. The rejection

probability Py[|Ty| > c| can be written as:

N 1 10111 S 51
Po[|T| > :Pm(c;’h,--.ﬂm)EE/O [S(—SH%dS. (13)
(=
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where 0,11 € [—m — maxj<j<,, y?, —m] is the unique negative root of g.(0) defined below,

8e(6) = (e + ) [ 6 (K+";19)-flvm<xﬁ—9>], 149

i=1 i=1 i

_ mc?
m—1"

and x =

From Lemma 4.1, when 0,11 > 0, the rejection probability in (13) depends only on
the ratios between the control standard deviations and the treated standard deviation.
The relative heterogeneity assumption in Assumption 3.2 equivalently assumes that at
least (m —k+1) of {’Yj}]m:1 is greater than or equal to p~!. To find the maximum re-
jection probability, we need to solve an m-dimensional optimization over (y1,...,vm) €
[0, 00)F=1 x [p~1, 00)"—k+1 4 Optimizing this integral directly can be computationally chal-
lenging even for a moderate m. As demonstrated in the next subsection, for any m > 2,
we can substantially simplify the m-dimensional optimization problem into multiple one-
dimensional optimization problems. The reformulated problem can often be efficiently
solved numerically.

4.2.3 Reformulating the problem of computing the maximum rejection probability

In this subsection, we discuss how to reduce the optimization for the maximum rejection
probability in (11) into multiple one-dimensional optimization problems. We summarize

the key ideas here and defer the technical lemmas to Appendix A.1 of this main text.

First, Lemma A.1 shows that the maximum rejection probability in (11) must be achieved
at some finite values of (4, ..., 0w, Opt1) € Sm(k, p). This means we do not need to worry
about the boundary case where some of {0']'};7:11 approach infinity. Next, Lemma A.2
shows the necessary conditions for any (o7, ..., 0mn, 0m+1) € Swu(k,p) to be a maximizer.
We summarize the implications of Lemma A.2 in the following theorem.

Theorem 4.2. For any given m > 2, k € {1,...,m}, p > 0, ¢c > 0 and c # m~'/?,
the maximum rejection probability in (11) under Assumption 3.2 must be attained at some
{(7]-}721 € Sk, p) that satisfy one of the following forms:

(i) o1 =0,and for1 <j<m, 0; is either O or some common value;

(ii) o1 =p,and for1 <j<m, 0; is either 0, or 1, or some common value.

“Note that the rejection probability is invariant to any permutations of the {’yj}}":l. We can, for example,

assume that the last (m — k + 1) of them is no less than p~! without loss of generality.
5The result in (i) follows from Bakirov and Székely (2006) and implies the maximum rejection proba-
bility when c;, 41 = 0 as shown in (12).
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Note that 0 is always a boundary value of ¢j for 1 < j < m, and 1 is also a bound-
ary value for some ¢; when 0,11 = p and Assumption 3.2 holds. Therefore, Theorem
4.2 essentially indicates that, at the maximizer of the rejection probability in (11), each o;
must either lie on the boundary or share a common value for all 1 < j < m. Importantly,
Theorem 4.2 explains why we can simplify the optimization for the rejection probabil-
ity into multiple one-dimensional optimization problems. This is because for all possible
maximizers shown in Theorem 4.2, there is only one unknown value, which is the com-
mon value of the {(7]'};.”:1 that are not on the boundary. Note that the maximum rejection
probability in case (i) with ¢;,11 = 0 can be efficiently computed as shown in (12). In the
following, we will therefore focus on the optimization for the rejection probability in case
(ii) with 0y, 41 > 0.

Specifically, under Assumption 3.2 with any k € {1,...,m} and p > 0, if (01,...,0n,
Om+1) € Sm(k,p) is the maximizer for the rejection probability and o,,1 > 0, then, for

alll < j < m, = U;% is either on the boundary (equals 0 or p‘1 ), or takes some

common value v > 0. Motivated by this, with a slight abuse of notation, we introduce

7., (c; p, v; m1,mp) to denote the value of p,, (¢; 71, . .., Ym) in (13) when m; of {'y]'};.”:l equal

p~1, my of them equal zero, and the remaining equal a common value . That is,

P, vimy,mo) = B, (0 Ly, 00 Y ), (15)

where 0 < mg, m; < m and my + m; < m.

Next, define the following as the supremum of p,, (c; p, y; m1, mg) over -y, with the sup-
port of ¥ depending on m and k:

pm(c;k, p;my,mg) = sup P, (c;p,v;mi,mp), (16)
TE[P,)

WhereB:Oifml zm—k—i—landezp_lifml <m-—k+1.

With the above notations, we now state our main theorem of how to evaluate the maxi-
mum rejection probability for a given critical value c, heterogeneity parameters (k, p) and

the number of clusters m.

Theorem 4.3. For any given m > 2, k € {1,...,m}, ¢ > 0 and ¢ # m~'/2, the maximum
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rejection probability in (11) under Assumption 3.2 can be written as®

max {pm,o(c) max Pm(c; k,p;ml,mo)} ifp>0

V4
0<my<k—1,0<m<m—my

pm(c;k,p) = ' ,
Pmo(c) ifp=0

where py o(c) is defined in (12) and pm(c; k, p; mq,mg) is defined in (16).

From Theorem 4.3, the key to obtaining the maximum rejection probability is to solve
the optimization problem in (16) for all combinations of (m1, mg). Importantly, for each
given (mj,mg), the optimization in (16) is an one-dimensional optimization problem,
which is computationally much simpler than the original optimization in (11), and we
can solve it using numerical optimization. In particular, for any given k € {1,...,k}, we
need to solve at most %k(Zm + 1 — k) one-dimensional optimization problems’, which is
mwhenk =1,2m —1whenk=2,...,and %m(m + 1) when k = m. Moreover, at a given
m, p > 0and ¢ > 0, to find the maximum rejection probability over all k € {1,...,m}, we
need to solve at most m(m + 1) one-dimensional optimization problems of the form (16),

because the optimizations required for different values of k overlap with each other.

We illustrate the above theorem through the following examples. Example 4.1 is about
k =1 and Example 4.2 is about k = 2.

Example 4.1. Let m = 6, p = 2, o« = 0.05, k = 1, and ¢ = tm,lll,% p% + % where
tn-1,1-¢ is the (1 — 5)-th quantile of the t-distribution with (m — 1) degrees of freedom.

We show the various functions from Theorem 4.3 in Figure 1.

A few observations from Figure 1 are as follows. First, the curves show p,, (c; p, y; m1, my)
as defined in (15) against 7, for m; = 0,...,5. Recall this function means that among
{'yj}](?:l, my of them equals p~! and the remaining of them equals y. We set v = ¢* in
order to display the behavior of large . Each colored curve corresponds to a specific
value of m;y. It can be seen that p,, (c; p, v; m1,mp) decreases as -y increases for each ;.

The black dotted horizontal line plots p,,o(c) defined in (12). It shows the maximum

rejection probability when ¢y, 11 = 0. Here, it is much smaller than 0.05.

As vy — o0, P, (c;p,7y; m1,mp) converges to values less than or equal to py,0(c). This
is not surprising, as in such scenarios, 0;,4+1 is much smaller than some control standard

deviations, essentially approximating the case where 0,1 = 0. A

®From Remark 4.4, p,;(c;k, p) = 1 when 0 < ¢ < m~'/2. For convenience, we also define p,,(c;k, p) = 1
atc = 0and c = m~'/2, so that p,(c;k, p) upper bounds the rejection probability for all ¢ > 0.
"When my + my = m, (15) no longer depends on 7, and thus no optimization over v is needed.
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Rejection probability

log(p™) 2 4 6 8
x (the common value y =€)

my 0 1 2 3 4 5

Figure 1: This above shows ﬁm(c; p,y;my,mp) against y for various values of m; with
m = 6,k = 1 and mp = 0. The vertical dashed line represents v = p~!. The horizontal
dotted line represents p,, 0(c). See Theorem 4.3 for the definitions of the functions.

Example 4.2. Consider the same setup as in Example 4.1 but with k = 2 and set the
value of c such that the maximum rejection probability equals a = 0.05. Figure 2 shows
the rejection probability under different combinations of <y, my and m;, where m( here

can only take the values 0 or 1.

As can be seen from the figure, the maximum rejection probability is achieved when
one of the {7;}7; equals 0 and the remaining (m — 1) terms from {7;}7", equals p~ L. For
instance, in the my = 0 panel, the purple line represents m; = 5 terms of {'Yj}}”:l equals
p~L. For this line, the maximum rejection probability is achieved when the remaining
m —mp = 1 term equals v = 0. Similarly, in the my = 1 panel, exactly one of {’yj};.”:l is
equal to 0. Each of the lines shows that the maximum rejection probability is achieved
when all the remaining terms equal p~1. A

Remark 4.5. As discussed in Appendix A.3, when m — oo, under certain regular-
ity conditions, the maximum rejection probability p(c;k,p) for any ¢,k and p > 0 is
achieved when 0,11 = 1, (k—1) of {0’]-}}“:1 are 0, and the remaining (m —k + 1) of
{(7]-};”:1 are equal to p~!. This is indeed the case for both Examples 4.1 and 4.2. Based on
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m=6,k=2

Figure 2: This above shows p,,(c;p,;m1,mp) against 7y for various my and m; with
m = 6 and k = 1. See the caption for Figure 1 for more details.

this intuition, we can first use this configuration of {(7]'};721 to get a candidate threshold
¢ such that Py[|T;u| > ¢] = &, where « is the significance level of interest. We can then
verify whether this candidate threshold c¢ achieves the desired type-I error control by
solving the optimization in Theorem 4.3. u

Finally, we report the critical values for different numbers of control clusters m and
heterogeneity parameters p for « = 0.01 and a« = 0.05 in Table 1 when k = 1. We report
the critical values for k = 2 in the supplementary material.

4.3 Closed-form valid f-test when k = 1

In this subsection, we consider the case where k = 1 in Assumption 3.2. This means that
Om+1 < PO forj=1,...,m,1ie, the treated standard deviation is smaller than or equal to
p times each of the control standard deviations.

In this case, we can obtain closed-form solutions for the maximum rejection probabil-
ity when the threshold c is large enough. Equivalently, this corresponds to testing at a
significance level that is not “too large.” The theorem is stated as follows:
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Table 1: Critical values for different values of , m and p for k = 1.

a = 0.01 a = 0.05
o\m 5 10 15 20 25 50 5 10 15 20 25 50

0.2 2256 1216 0972 0.858 0.791 0.656 1360 0.846 0.700 0.628 0.584 0.492
0.4 2762 1.657 1417 1311 1251 1.137 1.666 1153 1.021 0.959 0.923 0.853
0.6 3445 2204 1944 1832 1769 1.652 2078 1534 1401 1340 1305 1.239
0.8 4220 2796 2502 2376 2306 2177 2545 1946 1.803 1.739 1.702 1.633
1.0 5.044 3408 3.074 2932 2.852 2707 3.041 2373 2215 2145 2105 2.030

1.2 5896 4.033 3.654 3.492 3403 3238 3.556 2.807 2633 2555 2511 2428
14 6767 4.664 4238 4.056 3955 3.771 4.081 3.247 3.053 2967 2919 2.828
1.6 7649 5300 4.825 4.622 4510 4305 4.613 3.689 3476 3381 3.328 3.228
1.8 8539 5939 5413 5189 5065 4.839 5150 4.134 3900 3.796 3.738 3.628
2.0 9436 6.580 6.003 5758 5.622 5373 5.690 4.581 4325 4212 4148 4.029

22 10336 7223 6594 6326 6.179 5908 6.233 5.028 4.751 4.628 4.559 4.430
24 11240 7867 7.186 6.896 6.736 6443 6.778 5476 5177 5.045 4971 4.831
26 12146 8512 7778 7466 7294 6978 7325 5925 5604 5462 5382 5233
28 13.065 9.157 8371 8.036 7.851 7513 7873 6374 6.031 5.879 5794 5.634
3.0 13965 9.804 8964 8.607 8409 8.049 8421 6.824 6458 6.296 6.205 6.035

3.2 14876 10450 9.557 9.177 8968 8584 8971 7274 6.886 6.714 6.617 6.437
34 15789 11.097 10.150 9.748 9526 9.120 9521 7725 7313 7.132 7.029 6.838
3.6 16.702 11.744 10.744 10.319 10.085 9.655 10.072 8.175 7.741 7.549 7.441 7.240
3.8 17.616 12.392 11.338 10.890 10.643 10.191 10.623 8.626 8.169 7.967 7.854 7.642
4.0 18.531 13.040 11.932 11.462 11.202 10.727 11.175 9.077 8597 8385 8.266 8.043

42 19447 13.688 12.526 12.033 11.760 11.262 11.727 9.528 9.025 8.803 8.678 8.445
44 20362 14.336 13.121 12.604 12.319 11.798 12.279 9979 9453 9.221 9.091 8.847
4.6 21279 14985 13.715 13.176 12.878 12.334 12.832 10.430 9.882 9.639 9503 9.248
48 22195 15.633 14.310 13.747 13.437 12.869 13.385 10.882 10.310 10.057 9.915 9.650
50 23.112 16.282 14904 14.319 13.996 13.405 13.938 11.333 10.738 10.476 10.328 10.052

Theorem 4.4. For any given m >4, p > 0,¢c > 4/ i((':;i?), define:

3(mp? +1) 2x+3
me?+x+1" x+1
1—-7 mK

+ — _
1—7+min{(1-27)xZ— 1,0} mp*+x+1

Hy(c,p) = max {

7

r’:le and T = % are determined by (m,c), and Z =

where k = is determined

1
2-max{mp2+1,x+2}
by (m,c,p). Under the above conditions and notations, the following statements hold.

(i) Hu(c,p) is decreasing in c, and lim_,co Hy(c, p) < 0.
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inf{c > 31(("’:1:13)) : Hu(c,p) < 0}, which must be finite. Then, for any

C > Cpy o the maximum rejection probability pw(c; 1, ) under Assumption 3.2 with k = 1

(ii) Let ¢

=m,p =

and the given (p, m, c) has the following equivalent form:

pm(c;1,0) =T

1
|t—1] pz—l—E > c] :

Theorem 4.4 gives a closed-form solution for the maximum rejection probability under
the relative heterogeneity assumption with k = 1 and any given p > 0. The maximum
rejection probability is achieved when 0y = 0o = ... = 0, = p~' and 7,41 = 1. Im-
portantly, for any given m and p > 0, the cutoff ¢,, , can be easily computed numerically,
due to the monotonicity of the function Hy,(c, p) in c. Accordingly, Theorem 4.4 gives a

closed-form critical value of our t-test for any significance level less than or equal to

I P

1
‘tm—ly p2 + a > Qm,p] . (17)

That is, for any significance level « € (0, @m,p], a valid critical value for our two-sided
t-testis \/p? +m~1t, 11 g wheret, 1, «isthe (1 — 3) quantile of the t-distribution
with degree of freedom m — 1.

Table 2 reports the largest significance level a,, , such that our two-sided t-test has a
simple closed-form expression for the critical value, under Assumption 3.2 with k = 1 and
various values of (m, p). Note that our ¢-test can handle all valuesof m > 2,k € {1,...,m}
and p > 0, but it generally involves one-dimensional optimization as described in Section
4.2.3. We can conduct a similar theoretical investigation to simplify the optimization of
the rejection probability under Assumption 3.2 with k > 2. However, in this case, the
potential maximizers cannot be reduced to a single point, so one-dimensional numerical
optimization is still required. We relegate the detailed discussion under Assumption 3.2
with k > 2 to the supplementary material.

4.4 Power of the t-test

We now investigate the power of the proposed t-test under the alternative hypothesis H;
in (9) with 6 # 0. Without loss of generality, we assume that § > 0. The theorem below

gives a lower bound for the power of the t-test.

Theorem 4.5. Suppose that Assumption 4.1 holds for some & > 0, and define the t-statistic Ty,
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Table 2: Largest significance value in (17) such that our two-sided t-test has a closed-
form critical value under various values of (m, p).

m\ p 0.1 0.2 0.5 1 2 3 4 5 10

5 3950 4.418 6.438 9.456 11.866 12.505 12.647 12.693 12.770
10 3911 4510 7313 9.026 9.404 9435 9480 9.486 9.504
20 3.684 4.615 6337 6711 6.829 6.850 6.874 6.866 6.874
25 3491 4.442 6.068 6.278 6354 6.350 6.357 6.365 6.389
50 3.768 4.663 5.308 5330 5391 5437 5435 5436 5441

as in (8). Then, for any finite c > 0,

1 2(?+m 1) &
P[|Tu| > ¢] > P[Tyy > c] 21— 0',%1+1—|—720'j2 :
]:

The lower bound of power in Theorem 4.5 increases with J, where J corresponds to
Vn(p1 — po) in our large-sample inference for a finite number of clusters as shown in
Theorem 4.1. If the gap between the means of the treated and control clusters is bounded
away from zero, then, as the sample size n — oo, the power of our t-test with any
finite critical value will converge to 1. In addition, Theorem 4.5 also provides a rough
power estimate when we have some information about the treatment effect size and the

variances for the treated and control clusters.

5 Simultaneous inference

Recall that Assumption 3.2 involves two parameters p and k. They represent the allowable
degree of relative heterogeneity between treated and control clusters. Specifically, larger
values of p and k correspond to a greater degree of allowable heterogeneity. In practice,
specifying the values of (p, k) might be challenging, and it is often desirable to perform
multiple analyses for a wide range of values for (p, k). This raises the question of how
to interpret the results of the analysis under different values of (p,k). In this section,
we show that the analyses over all possible values of (p, k) can be simultaneously valid,
without the need of any adjustment due to multiple analyses. Moreover, the analysis
results can be easily visualized and interpreted. Similar simultaneous inference has been
used for sensitivity analysis of observational studies (Cui and Li, 2025; Wu and Li, 2025).
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We first introduce several notations to denote the true relative heterogeneity of the
standard deviations between treated and control clusters. For any k € {1,...,m}, define

Tm+1 :
_‘T(k) , if (T(k) >0,

ox =inf{p >0: 0,11 < pogy} =40, if o) = 0and 041 = 0, (18)

00 if k) = 0and Omt1 > 0,

where 07,11 and 0y in (18) denote the true standard deviation of the treated cluster and
that of the control cluster at rank k. Consequently, the values of p; reflect the true relative
heterogeneity between the treated and control clusters. In particular, larger values of p;
indicate greater heterogeneity between the treated and control clusters.

We now explain the key idea for our simultaneous inference procedure. In Section 4,
we test the null hypothesis in (9) of no mean difference between the treated and control
clusters under Assumption 3.2 for some k € {1,...,m} and p > 0, which is equivalent to
that p; < p with p; defined as in (18). Importantly, we can reinterpret the t-test in Algo-
rithm 3.1 as a valid test for the null hypothesis of p; < p about the true relative hetero-
geneity in (18), under the assumption of no mean difference between treated and control
clusters (i.e,, 6 = 0). By standard test inversion, we can construct confidence intervals
for py, which must be one-sided confidence intervals with unbounded right endpoints
and thus provide essentially lower bounds on the true relative heterogeneity, under the
assumption that § = 0. Moreover, these confidence intervals will be simultaneously valid
across all k € {1,...,m}. We summarize the results in the following theorem, followed
by a discussion of its practical implications and interpretation. For any z € R, we write
(z,00] = (z,00) U{co} and analogously |z, c0] = [z,00) U {c0}.

Theorem 5.1. Let « € (0,1). Suppose Assumption 3.2 holds with § = 0. Let T, be the test
statistic as defined in (8).

(i) Forany k € {1,...,m}, an (1 — a)-confidence set for py in (18) is

Z-m,oz,k = {P >0: pm<|Tm|/k/p) > ‘X} U {oo} = (pm,tx,k/ oo] or [ﬁm,a,kz oo], (19)

which must be an one-sided confidence interval with P, o = infZ,, 4 k.

(ii) The confidence intervals in (i) are simultaneously valid across all k € {1,...,m}, in the
sense that

Plo;y € Zyuxforallk e {1,...,m}] > 1—a.
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The interpretation of Theorem 5.1 is as follows. If there is no mean difference between
treated and control clusters (i.e., § = 0), then we need to believe that, with (1 — a) confi-
dence level, the relative heterogeneity py in (18) must be greater than (or equal to) 0, o k.,
forall k € {1,...,m}. Thatis, with (1 — a) confidence level, the treated standard devia-
tion 07,11 must be at least p, , x times the control standard deviation o(y) at rank k, for all
k€ {1,...,m}. If we question any of these statements on the true relative heterogeneity,
then the assumption of 6 = 0 is likely to fail, or equivalently there is likely significant
mean difference between the treated and control clusters. Obviously, the larger the val-
ues of {0y, .k}, the stronger the evidence for a nonzero treatment effect. In practice,
we can easily visualize these confidence intervals by, say, plotting k against p,, , x; this is
illustrated in the two empirical applications in Section 7 ahead.

We now discuss the computation for the confidence intervals in Theorem 5.1. By the
definition of the p-value py(c; k, p) in (11) and the fact that the set Sy, (k, p) in (10) increases
as k or p increase, py(c;k, p) must be nondecreasing in both k and p. The monotonicity
in p then explains the equivalent one-sided form of the set in (19). Thus, we can use the
bisection method to find the thresholds {0, }{-;- In addition, the monotonicity in k
implies the threshold gy, , x is nonincreasing with k. Hence, we can first find ¢, ,,1, and
then sequentially use ¢,, , x—1 as an upper bound for p,, , x in the bisection method, for
2<k<m.

Remark 5.1. Hagemann (2024) also reported thresholds like {g,, , s} for his test. How-
ever, his test only works when k = 1 or 2, while our test works for any k € {1,...,m}.
In addition, as shown in Theorem 5.1, these thresholds can be interpreted as lower con-
fidence bounds for the true relative heterogeneity, and they are simultaneously valid,
indicating that the confidence bounds for all k are indeed “free lunch” added to those
fork=1or2. |

6 Simulations

In this section, we consider two sets of numerical exercises to compare the performance

of the t-test against other methods for conducting inference with a single treated cluster.

6.1 Simulation design 1: normal means

The first simulation design generates data using normal distributions. The data gener-

ating process (DGP) is as follows. We generate normal random variables as in Assump-
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tion 4.1. In particular, {lpj};-”:l are normally distributed with mean 0, ¥, 1 has mean J,

2 32 21 m ..
Tpyr = p7, and {07} are specified below.

We consider two different DGPs to generate the random variables for the control clus-

ters.
DGP1. o7 =1forj=1,...,m.

DGP 2. o2 =1+ - forj=1,...,m.

m
DGP 1is the homogeneous design in which all control random variables have the same
varaiance. We introduce heterogeneity in DGP 2 and allow the variance to vary between
1 and 2. The goal is to test the two-sided hypothesis (9), under various heterogeneity
parameter p, cluster size m, and significance level . We compare the performance of our
t-test with Hagemann (2024) in terms of size and power. This is because both of our tests
work with a single treated cluster and a finite number of control clusters, and are valid

under a certain relative heterogeneity assumption.

In the simulations, we consider p from 0.1 to 2 with step size 0.1, m € {5,10,25,50},
and « € {0.01,0.05,0.1}. We focus on two-sided tests and choose p in our t-test and
Hagemann (2024) so that it matches the one used in the DGP, i.e., the relative heterogene-
ity assumption is always correctly specified. The results are based on 500,000 Monte Carlo
replications. Figure 3 shows the result for & = 0.05 under DGP 1 when k = 1. The figure
plots the rejection rate against various values of p. Each facet represents a specific com-
bination of m and J. § = 0 corresponds to the results under the null. § > 0 corresponds
to the results under the alternative. Note that Hagemann (2024)’s result does not appear
or only partially appear in some of the facets. This is because Hagemann (2024) may not
necessarily be able to find a weight for his rearrangement test such that his test can be

shown to be valid for some combinations of m, p and k.

Figure 3 shows that our test performs favorably when compared to Hagemann (2024).
Both of our tests control size. The t-test is more powerful, especially when p is small. As
p increases above 1, the power difference decreases, but we are still more powerful.

Next, Figure 4 reports the results for DGP 2 that includes more heterogeneity among
the control random variables for « = 0.05 and k = 1. As predicted by the theory, our t-test
becomes more conservative when more heterogeneity are included. Our t-test continues
to control size and has power against the alternative. Moreover, our test outperforms
Hagemann (2024)’s test in most cases. In the supplementary material, we report the re-
sults for k = 1 and k = 2 for both DGP at various significance levels.
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Figure 3: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.05 for DGP 1 of simulation design 1.
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6.2 Simulation design 2: two-way fixed effects

Next, we conduct a simulation exercise with two-way fixed effects as in Example 2.3.
We consider a design that is based on the ones used in Conley and Taber (2011) and
Hagemann (2024). Asbefore, let 7y = {1,...,m} be the control clustersand [J; = {m +1}
be the treated cluster. Let 7 = {1,...,10} be the total number of time periods. Let fp = 6
be the intervention period and Dj; = 1[j € Jyandt > fo] forj € J and t € T. Each
simulated data is generated from the following two-way fixed effects model

Yjr = ar + v+ 0D + Ujy, (20)

where ¢y = 1 forallt € T and 7; = 21[j < %] — 1forall j € J. We test the null of 6 = 0
and consider 6 € {0,1,2,3} when generating the data. We consider the following DGPs
based on model (20). The first four DGPs are the same as the ones considered in Hage-

mann (2024). The remaining two DGPs are based on the error distributions considered in
Conley and Taber (2011).

DGP 1. Generate Uy = nU;; 1 + ol [j:m“]Vjt where 17 = 0.5 and Vj; are independently

distributed standard normal random variables.
DGP 2. Same as DGP 1, but use 7 = 0.1.
DGP 3. Same as DGP 1, but use 7 = 0.9.

DGP 4. Same as DGP 1, but Vj; follows a normalized X5 distribution with mean 0 and

variance 1.
DGP 5. Same as DGP 1, but use Vj; ~ Uniform[—\/g, \/5]
For each DGP, we are interested in testing the two-sided hypothesis of

Hyp:0=0 wvs H;:0#0.

In addition, we consider simulations with m € {5,10,25,50}, ¢ € {0.1,0.5,1,2}, and
« = 0.05. We report the rejection rate curves based on 5,000 Monte Carlo simulations. For

each DGP, we consider conducting inference using the following four methods:
t The t-test proposed in our paper.

H The rearrangement test by Hagemann (2024).

CT The procedure of Conley and Taber (2011) that assumes homogeneity.

FP The bootstrap procedure of Ferman and Pinto (2019).
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Figures 5 and 6 show the results for DGPs 1 and 2 under & = 0.05 across different
numbers of clusters m and true relative heterogeneity o. We set the relative heterogeneity
parameter p for both our and Hagemann (2024)’s method in all the DGPs to be the corre-
sponding o, so that the relative heterogeneity assumption is correctly specified. We also
incorporate the correct value of ¢ in applying FP to specify the heterogeneity.
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Figure 5: Simulation results for DGP 1 of simulation design 2 at « = 0.05.

It can be seen that our t-test performs well and compares favorably to other methods.
In particular, the CT test exhibits inflated Type I error rates when the number of control
clusters m is small and ¢ is large. This inflation arises because the validity of CT relies

on the assumption of an infinite number of clusters and homogeneous variances between
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Figure 6: Simulation results for DGP 2 of simulation design 2 at « = 0.05.

the treated and control clusters. The FP test also shows an inflated Type I error when m
is small, with the inflation becoming more pronounced as ¢ decreases. This again reflects
its reliance on the asymptotic validity under an infinite number of clusters. Notably, we
assume that FP has access to the true heterogeneity between the treated cluster and each
control cluster, which is a stronger assumption than those required by our t-test or Hage-
mann (2024)’s rearrangement test. Both our test and that of Hagemann (2024) successfully
control Type I error. In contrast, our test is applicable regardless of the number of con-
trol clusters and demonstrates higher power across different levels of heterogeneity. The

results for DGPs 3 to 5 are contained in the supplementary material.
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7 Empirical applications

In this section, we illustrate the t-test proposed in this paper with two recent empirical
applications. For each of the empirical applications, we report two sets of results. First,
we try to find the largest p such that the null hypothesis is rejected when k = 1 among
various regression specifications of the empirical examples. Among those specifications
where the null can be rejected at some p, we conduct simultaneous inference as discussed

in Section 5.

7.1 Empirical application 1: Depew and Swensen (2022)

Depew and Swensen (2022) examines the impact of the 1911 New York State Sullivan Act
on mortality rate. The Sullivan Act required New York citizens to obtain a permit and
license to carry concealable weapon. We consider the following two-way fixed effects
model:

Outcomej; = fTreated;; + at + vj + €jt, (21)

where Treated ; equals 1 if state j is New York and ¢ is the post-treatment period, a; is the
year fixed effects, vy, is the state fixed effects, and €j; is the residual term. They consider
the following four outcome variables: homicide rate, suicide rate, gun suicide rate, and

non-gun suicide rate.

They report cluster-robust standard errors and p-value from the Wild cluster boot-
strap. There is only nine control clusters in this empirical application. Hence, Hagemann
(2024)’s test may not be applicable because there can be no weights such that his rear-

rangement test is valid for some relative heterogeneity parameters p.

We are interested in testing

Ho:B=0 vs Hi:B#0. (22)

Table 3 summarizes the estimation and inference results of the baseline model de-
scribed in (21) for the four outcomes described above. The point estimates and the Wild

cluster bootstrap p-values are taken from Table 2 of Depew and Swensen (2022).8

The remaining rows of Table 3 report the largest p such that the null can be rejected
for significance levels « = 0.01, 0.05, and 0.1. For entries with “NA” in the table, it refers
to the situation where there does not exist a p > 0 such that the null is rejected. If we

8The point estimates and p-values that Depew and Swensen (2022) report are based on weighted least
squares.
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Table 3: Regression and inference results for empirical application 1 with k = 1.

Homicide rate Suicide rate Gun suicide rate Non-gun suicide rate

Point estimate -0.04 -0.85 -1.42 0.54
Wild p-value 0.87 0.29 0 0.28
Rearrangement test (Hagemann, 2024)
a = 0.01 NA NA NA NA
a = 0.05 NA NA NA NA
a=0.1 NA NA NA NA
t-test
a = 0.01 NA NA 0.65 NA
a = 0.05 NA NA 1.03 NA
a=0.1 NA NA 1.3 NA

focus on the gun suicide rate under « = 0.1, it means that the null can be rejected when
the variance in New York is at most 1.32 &~ 1.69 larger than the smallest variance in the
control clusters. The true relative level of heterogeneity such that the null can be rejected
may be related to the population size of the various states. In particular, New York state
has a larger population than the other control states in 1911 (Federal Reserve Economic
Data, 2025): the population of New York state was 9.249 million, and the largest control
state was Massachusetts with 3.383 million and the smallest control state was Vermont
with 0.358 million.

Next, we conduct simultaneous inference for our t-test as in Section 5. We focus on the
outcome “gun suicide rate” as we can find p such that the null is rejected when k = 1.
Figure 7 reports the results for « € {0.01,0.05,0.1} on the range of p for various k such
that the null can be rejected. The shaded area represents the simultaneous confidence

region for true relative heterogeneity when there is no treatment effect.

7.2 Empirical application 2: Hiraiwa et al. (2024)

Hiraiwa et al. (2024) examine whether firms enforce noncompete agreements (NCAs).
NCAs are restrictions that prevent workers from joining or starting competing firms. In
2020, Washington state passed a law that prohibits NCAs for workers earning below a
certain threshold. The threshold was $100,000 per year in 2020 and $101,390 per year in
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Figure 7: Simultaneous inference for empirical application 1 at different significance
levels «.

2021. They study the impact of being above or below the threshold on employment for
different earnings bins. They consider the following two-way fixed effects model in their
panel B of Table 1:

logEmp,, , = pTreated;; + a; + vy + €y,

where Emp,, , is the employment count of bin b at year ¢, Treated, ; equals 1 for the focal
bin in the focal year, a; and 7, are the year and bin fixed effects, and €, is the error term.
They have 30 clusters (income bins). They use one-sided randomization inference and

found that there is no significant effect.

We apply our method and Hagemann (2024). We are interested in testing the two-sided
hypothesis as in (22). Table 4 summarizes our results. Each column contains the result
for a specific focal year and definition of the treatment variable. For instance, column 2
refers to focal year 2020, and the treatment variable is defined to be equal to 1 when the
income bin is just above the threshold, i.e., $100-101.389k. The remaining columns are
defined similarly. For each regression specification, we find the largest p such that the
null is rejected. For entries with “NA” in the table, it refers to the situation where there
does not exist a p > 0 such that the null is rejected.

Next, we conduct simultaneous inference for our t-test as in the first empirical appli-
cation. We focus on the two variables for focal year 2021 because we can find p such that
the null is rejected when k = 1. In particular, we report the range of p for various k as

long as there exists p such that the null can be rejected. Figure 8 reports the results for
a € {0.01,0.05,0.1}.
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Table 4: Regression and inference results for empirical application 2 with k = 1.

Focal year 2020 Focal year 2021
Above Below Above Below
threshold threshold threshold threshold
$100-101.389k $98.61-100k $101.39-102.78k $100-101.39k

Point estimate -0.001 -0.002 -0.038 -0.024
Rearrangement test (Hagemann, 2024)

a = 0.01 NA NA NA NA

« = 0.05 NA NA NA NA

a=0.1 NA NA NA NA
t-test

a = 0.01 NA NA 0.31 0.14

a = 0.05 NA NA 0.45 0.25

a=0.1 NA NA 0.56 0.33

8 Conclusion

In this paper, we propose a t-test to conduct inference with a single treated cluster under a
certain relative heterogeneity assumption. The ¢-statistic and the associated critical values
are easy to calculate in many empirically relevant applications. We show that our test
performs favorably when compared to other methods in the literature. We also show that

our test is valid with weaker assumptions.

A Appendix for the main text

A.1 Lemmas for Section 4.2.3

We first state the lemma that the maximum rejection probability in (11) must be obtained
at some finite values of {0}};”;51. This implies that we do not need to worry about the

boundary case where some of {a]-}}”:tl approach infinity.

Lemma A.1. For any k € {1,...,m} and ¢ # m~/27 the maximum rejection probability

9Similar to the footnote for Theorem 4.1 and as discussed in Remark 4.4, we will consider values of ¢
greater than m~1/2 for most conventional significance levels.
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Figure 8: Simultaneous inference for empirical application 2 for different outcomes and
significance levels «.

pm(c;k, p) in (11) must be obtained at some (04, ..., 0m, Opi1) € Sm(k,p).

Next, we investigate possible maximizers for the rejection probability. From Section
4.2.1, when 0,11 = 0, the rejection probability Py[| T,| > ¢] of our ¢-test is at most py, o(c)
defined as in (12), which can be achieved at some values of {(7]-};”:1 that satisfy our relative
heterogeneity assumption, regardless of the values of p and k. Thus, in the following, we
consider only the case where 0,41 > 0.
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Recall the integral representation of the rejection probability in Lemma 4.1. Our goal is
to optimize (13) over y; = %, j =1,...,m,under the constraint imposed by the relative
heterogeneity assumption. Such an optimization can be numerically challenging even for
moderate m. The following is a key lemma that can greatly reduce the set of possible

maximizers for the rejection probability.

Lemma A.2. Consider the integral representation in (13) for the rejection probability. Fix the
values of ¢ > 0, v3,...,Ym > 0and 0,11 < 0, and view the rejection probability Po[|T,,| >
¢ = 9,,(¢GY1, Y2, Y3, -, Ym) as a function of only 71, where vy, is uniquely determined by

V1, V3r- - Ym and Oy, If ¢ £ m~1/2
i.e., y1 # 72, and the first derivative of P, (¢; Y1, 72,73, - - -, Ym) Over 3 is zero, then the second

, y1 and vy are both positive and they are not equal,

derivative of p,,,(¢; Y1, Y2, V3, - -, Ym) Over ’y% must be positive.

Lemma A.2 has an important implication. Specifically, given values of c,v3,...,vm
and 6,1, if 7 is in the interior of the feasible region for optimization, and 71 # 77, then
(Y1, 72, - - -, ¥m) cannot be a maximizer, or even a local maximizer, for the rejection proba-
bility p,, (¢; Y1, 72, Y3, - - -» Ym). Moreover, because Ty, is invariant to permutations of con-
trol clusters, the value of p,, (¢; v1, 72, - - ., Ym) is invariant to permutations of (7y1,..., ¥m)-
Therefore, Lemma A.2 essentially applies to any pair (7;,7;) for i # j.

For any k € {1,...,m} and p > 0, suppose now that (03,...,0m, 0;y41) is a maxi-
mizer for the maximum rejection probability in (11), and ¢;,,+1 > 0. Then (y1,...,7m) =

(Uzlﬂ, .., 0211) must be a maximizer of p,, (¢; y1,...,¥m) overall (y1,...,7m) € RY, sat-
isfying that () > p~1, where Y () is the kth smallest value of {'y]-}}”:l. From Lemma A.2,
this cannot be true if there exists i # j € {1,2,...,m} such that (i) 7; # 7, and (ii) both
7i and <y; are not in the set {0, 071}, where the latter ensures that 7; and 7;j are not in the
boundary of the feasible region so that we can apply Lemma A.2. Therefore, to maximize
the rejection probability, it suffices to consider only the cases where Vs forl <j < m,
is either O, or p‘l, or some common value in R>g. More specifically, under Assumption
3.2 for any given k and p > 0, it suffices to consider the following possible values for

(Y1, Ym) for0 <my <k—T1and 0 < my < m — my:

T

-1
P Am Rso,  ifmy >m—k+1,

([ , Where vy € - (23)
[071,00), ifmy <m—k+1.

YLm—my—my

In (23), we essentially enumerate the possible numbers of { 'Yj}}n:1 that are zero, p~!, and

some common value <, respectively. Note that under Assumption 3.2 with given p > 0
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and k, the number of terms in {’yj};.”:l that are zero is at most (k — 1), and the possible
range of the common value v depends on the number m; of the terms in {v; };”:1 that are
already p~!. In particular, if m; < m — k + 1, then the common value 7 is at least p 1.

A.2 Lemmas for the k = 1 case in Section 4.3

In this subsection, we show that the optimization in (16) can be further simplified, by
excluding values of y that cannot maximize p,,(c; p, y; m1, mp) in (15). This relies crucially
on the following lemma; we present a concise version below, and relegate the details to
the supplementary material.

Lemma A.3. Consider the integral representation in (13). Fix the values of c > 0, m > 3,
Y3, .-, Ym > 0and 0,1 < 0, and view the rejection probability Py[|Ty| > c| = p,,,(c; Y1, 72,73,
-+, Ym) as a function of only 1, where vy, is uniquely determined by c, y1, Y3, ..., Ym and 0,4 1.

If y1 = maxj<j<pyi > 72 > 0c > i(("ni__lz)), and Hy, (c;v1, .-, vm) < 09, then the first

order derivative of P, (¢; Y1, Y2, Y3, -+, Ym) Over ’y% must be negative.

Lemma A.3 has an important implication. Specifically, given values of 3, ..., v, and
6,+1, if, for some small € > 0, [y; — €, 1] is in the feasible region for optimization, and
the conditions in Lemma A.3 holds, then (1,72, - .., Ym) cannot be a maximizer, or even a
local maximizer, for the rejection probability p,,(c; v1, 72,73, - -, ¥m). This is because we
can strictly increase this rejection probability by slightly decreasing y1. Analogous to the
discussion after Lemma A.2, because the rejection probability is invariant to permutations
of (v1,...,vm), we can always set y; = maxj<;<y, ; without loss of generality, and apply
Lemma A.3 to any y; with 2 < j < m. As long as the conditions in Lemma A.3 hold for
some 2 < j < m, we can exclude the corresponding (1, ..., vm) from the set of possible
maximizers for the rejection probability.

We apply Lemma A.3 to the optimization in (16) to exclude some values of 7 > p~!
that cannot maximize p,,(c; p,y; m1, mo)ll. In the ideal case, we can exclude all values
of v > p~!, and the optimization in (16) is either solved or needs only to be maximized
over vy € [0, p_l]. In Theorem 4.4, we focus on the relative heterogeneity assumption with
k =1, i.e., the treated standard deviation is smaller than or equal to p times each of the
control standard deviations. We relegate the discussion under Assumption 3.2 with k > 2

to the supplementary material.

19We give the detailed expression of H,(+) in the supplementary material
Specifically, when using Lemma A.3, we set 1 to be ¢ and 7, to be p~ 1.
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A.3 t-test with a large number of clusters

Despite that our inference procedure focuses on the case with a finite number of control
clusters, we briefly explore the asymptotic regime where the number of control clusters
tends to infinity. This offers useful insights even when the number of control clusters is
finite. Below we first state a rather weak regularity condition. We then present the main

theorem and discuss its implications.

Condition A.1. As m — oo, both 72 41 and m~1 2}”:1 (7].2 are bounded away from zero

and infinity, and m—2 Z}-”:l 0]‘-" — 0.

Theorem A.1. Under Assumption 4.1 and Condition A.1, as m —; oo, we have

sup |P[T,, <c]—P
ceER

T i1€ 40 <c||—0
1/111_12;71:10'].2_
where ¢ ~ N(0,1).

From Theorem A.1, when m is large, the distribution of the test statistic T), under both
the null and the alternative hypotheses can be approximated by an Gaussian distribution.
This has important implications, as detailed below.

First, suppose the null hypothesis Hy in (9) holds (i.e., § = 0). Then, when the num-
ber of clusters is large, the rejection probability Py[|T,| > c] depends only the ratio be-

tween the treated-cluster variance o7, ; and the average of the control-cluster variances

m~1 i (sz. It is increasing in this ratio. In particular, under Assumption 3.2 for some
p > 0, we have the following for any ¢ > 0:
Um+1 |€‘

——|g| > |,
/ _12;71:1(7]2 m—k—+1

where the last inequality becomes equality when 07,11 = 1, (k — 1) of {¢;}7"; equal 0,

<P

>C

Po|| Ty > ] ~ P

and the remaining (m — k + 1) equal p~!. It also implies that the critical value CVinak,p

of a level-u test is approximately /7=t77 - pz5, where z4 is the 5 upper quantile of the

standard normal distribution.

Second, under the alternative hypothesis with, say, § > 0, the above discussion also
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implies that the power of the level-a t-test is approximately

I 1y o2
L m 2]:1 U]

)
‘ > Rm,k,ng]

P[|T| > Vi) = P

0

I
M3

€+

Om+1

0
Um+1

>Ple+

> Rm,k,pZ%] ’ (24)

2

. . . . (%

where R? | , 18 the ratio between the maximum possible value of #}102 and the cor-
&k, =17

responding true value, and Ry, x, is the square root of R2 . o+ From (24), the lower bound
of the approximate power in (24), which is also approximately the power of an one-sided
%H and decreasing in Ry,  ,. This is intuitive, since ﬁ rep-

resents the signal-to-noise ratio, whereas R, x , represents how conservative we are when

level-7 test, is increasing in

making the relative heterogeneity assumption.

We now give a remark that is helpful for our numerical search of the critical value
when m is finite.

Remark A.1. Recall that = % for 1 <j < m. From the discussion before, the maxi-
mum rejection probability is achieved when k — 1 of {fyj}]fnzl equal 0 and the remaining
(m —k+1) equal 1. Thus, given any significance level, we suggest using this configura-
tion of {’y]-};-”:l as an initial guess for the desired critical value for any finite m, and then
use the optimization in Theorem 4.3 to verify whether such an initial guess of critical
value leads to the t-test with the desired significance level; see Remark 4.5. Moreover,
as demonstrated in Section 4.3, under the relative heterogeneity assumption with k =1,
the maximizer for the rejection probability from the asymptotic analysis with large m
is also valid when the number of control clusters is finite and the significance level is
sufficiently small. Our numerical experiment shows that this holds more generally; at
usual significance levels, the critical value from the asymptotic analysis with large m is
often valid even when m is finite, for general relative heterogeneity assumption with
k>1. [
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Supplementary material for “Cluster-robust inference with
a single treated cluster using the t-test”

S1 Technical lemmas for the t-test

Throughout this section, we will study t-test based on independent normal observations
under Assumption 4.1. In Section S1.1, we will show that the t-test reject the null if and
only if a certain quadratic form of the normal observations is bounded by 0, and study
the property of the corresponding coefficient matrix, particularly about its characteristic
polynomial. In Section S1.2, we give an integral representation of the rejection probability.
In Section S1.3, we study the first and second order partial derivatives of the rejection
probability. In Section S1.4, we study bounds on the first order partial derivative of the
rejection probability.

S1.1 Quadratic form and characteristic polynomial of the coefficient

matrix

Lemma S1.1. Recall the definition of Ty, in (8). Let ¥ = (Y1, ¥1,---,Pm) . Then for any

c>0,
Tyl >c <= 9 V<0 (S25)
where
2 _ T
= mmi 1 and V= <1:: kI, —}‘%1,%1;) '

Proof of Lemma S1.1. By definition, for any ¢ > 0, |Ty,| > c if and only if ¢, 11 — ¢,,| >
¢Sm, which is further equivalent to mc?S2, — m(y1 — 9,,)> < 0. Let 1, be an m-
dimensional vector with all elements being 1, 0,, be an m-dimensional vector with all
elements being 0, and I, be an m x m identity matrix. By some algebra, we can show
that

— 2 AT 1 _ AT 1 —m Ty o
(Yms1— ) = (—m‘11m> (1 —m 11,2)#) =1 <_m_11m m—21m1;> Y,
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and

m

(m - 1)572;1 = Z(lpj - wm)z = ’lble(Im - m_llmlz)wlzm = "/)1Tm(Im - m_llmll)"pl:m

j=1
(0 0,, -
=% (()m I — mT11m1;> ki
where 1., = (¥1,...,¢¥m) . These imply that
mc?Sy, — m(Pui1 — 9,,)°
2 T 19T
- mmf 1{pT (0(,)11 I, — n?T11m1T> b —mp! <_m111 r;_nzl 1111%) ¥
m m mlm

0 0,, m -1, )
O 2T, — 1,1 1, m 11,1}
(—m 1,

L ST — (s +1>1m1T>

P

where the last equality holds by definition. From the above, we derive Lemma S1.1. [

Lemma S1.2. Let D = diag(0y,41,04, - .,0m), and define V and « as in Lemma S1.1. For any

nonnegative 07,03, ...,0% 1,

fA) = —(mod, +A) ﬁxa— (KU’%_H—FK;’:lA).i[g}.Z I (Kg'].z—)\)

i=1 jAiII<j<m
is a characteristic polynomial of DV D.

Proof of Lemma S1.2. We first consider the case where 01,09, ...,0,41 are all positive.

Let diag(c;.2) be an m x m diagonal matrix with diagonal elements (072, ...,0;,2). By

—m 1!
ml T AD™?
1y &l — 21,1,

—m — Aoy, %, 1,

definition, we have

V —AD 2
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b 1 1 1

1 d+c d - d
=1 d d+4c --- d ,
1 d d - d+cp
where b = —m — /\amﬂ,d— £t and ¢; = k — Ao} 2 for 1 < i < m. Applying Bakirov

(1998, Proposition 1), we have

det(DVD — AL, 1)
= det(D)*det(V — AD?)

b 1 1 - 1

_— 1 d+ ¢ d d

:Hg].21 d d+c - d

]':1 . . . . .
1 d d - d+ ey

n K (72 no g2
iy nwz_M.H( SRR
_|_

e, N
(x02 = 2 = [~ 5 o 42 +a,31+1} Sle 11 oe-n]
L m j jAI1<j<m

—(mo, +1+A)

[T(xo? —A) + (a + 5 ;%) 3 [of, [T (o? —A)]

where the last equality holds by definition.

We then consider the case where some of the {(7]-};721 can be zero. By definition, for

any A € R, both det(DV D — A, 1) and f(A), viewed as functions of {(Tj};.":ﬁl, are

polynomial and thus continuous functions of {(7]}"“rl By continuity and the fact that
det(DV D — Al ;1) = f(A) for any positive {g; ;”*11, we can know that det(DV D —
Al 1) must equal f(A) for any nonnegative {(7]-};7:rl
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From the above, Lemma S1.2 holds. ]

. L . 2
Lemma §1.3. Consider any positive 0,,11 and any nonnegative oy, ...,0p. Let xk = 15,
vi = ——for1 <i <m,and

Um—H

¢(0)=—(m+0 ﬁ (ky? — (K + Kmi()) : i [’yfn(xﬁ - 9)] : (526)

i=1 i=1 j#i

Then, for any A € R, f(A) in Lemma S1.2 can be written equivalently as

f(A)=(0i+1)m“g< ! )

2
Um—i—l

Consequently, if A1, ..., Ay41 are the m + 1 roots of f(-), then 6; = ?—i, i=12,..., m+1,
are the (m + 1) roots of g(-).

Proof of Lemma S1.3. For any positive 07, ;, A € R and 6 = 02/\ , by definition and

m+1
some algebra, we can verify that

2 \—(m+1) - K+1 = |2 2
(Thn41) fA) = —(m+0) T (x77 - K+ 0)- Z Vi H(K’Yj —0)
i=1 i=1 jFi
=38(0).
This immediately implies Lemma S1.3. O

Lemma S1.4. Consider any ¢ > 0, any positive 0,,11, and any nonnegative o7, . .., 0. Define
K,Y1,---,Ym and g(-) as in Lemma S1.3. Define further T = ’;—j;} Let yqy < 72y < ... <
Y(m) be the sorted values of v1,72,...,Ym- The (m + 1) roots of g(0) in (S26) can then be
characterized as follows:

(a) for each 1 < i < m — 1, there is a nonnegative root 6; € (K’)’( ,Ky? (i+1) )i i) < Vi)
and 0; = K’)/%i) otherwise;

(b) there is a zero root 0, = 0;
(c) there is a negative root 0,11 < —71
Proof of Lemma S1.4. First, we give an equivalent expression for g(-). Let {¥;}>_; be the

unique ordered values of {7}, such that §4; < --- < 4. In addition, let m; be the
multiplicity of 4; for each i = 1,...,L. Note that Y ; m; = m by construction. From
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Lemma S1.3, g(+) in (526) has the following equivalent forms

g(0) =

29 e
1=1 i=1 j#i

L L

(k77 —6)™i~ { ).

2o

K+ 1
(m+0) [ J(x77 — ( ) [ miy; K’Y]Z—G)]}
i=1 i=1 j#i
= [ [0e77 —0)"3(0), (527)
i=1
where
s(0) — b 2 s 1y : 2 2
§(0)=—(m+0) ] [(x7; —0) + Z Vi [ [(e7; = 0)| -
i=1 i=1 j#i
From (527), it can be seen that there are }_
the factor [Th; (k9% —

iL:1(mi -1) = ZiLzl m; — L = m — L roots from
g)mi—1,

Second, we prove (a) and (b) in the case where 47 > 0. Consider the value of g(-)
evaluated at K’712 forl =1

L. By definition, for 1 <[ < L, we have

L
~f k+1 _
g(K,le) = —(m +K'yl H KY; — K')’l (K+ TK%Z) 2 [ ivi H K'Y] - K'YZ ]
i=1 , i=1 j#i
- (e8] it e
J#l
_ k+1 oy
= (K+ K%) mit -1 177 = 77)-
~  J#
>0

(S28)

By the construction of {’y]} ~ 1, we can know that the sign of §(x77) is (—

1)1for1 <
I < L. Thus, by the continuity of g(-), it must have a positive root in (x4, k77, ,), for
I=1,2,...,L — 1. In addition, we can verify that

L L
§(0)=—m H(K’ﬁ) +re)] [mi’%’z

i=1

I (xﬁ)]

j#i1<j<L

L L L
= —mc T[47+«4- ) <m1H'7]2>
i=1 ' j=1

i=1
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L L
=« [17 (—m+2mi> -
i=1 i=1

Combined with the first part, we can know that (a) and (b) in Lemma S1.4 hold.

Third, we prove (a) and (b) in the case where 41 = 0. In this case, ¢(-) simplifies to

L y L
§(0) = —(m+06)( H Ky? — <K—|— ;‘7';19> (—9)-2[ miv; [ (77 - ]

j#Li

L 41 L
= -0 —(m+0)H(K’ylZ—6)~I—< 6)2[ 121—[ K’)’] ]}
i=2 i=2 j#1L,i
=—0-4(0), (529)
where
L Kk+1 L
§(0)=—(m—+0)]J(x7? - (K+ 0) Y [mi'ﬁ [Ty - 6)] :
i=2 m i=2 A1,

We can verify that

L L L L
§(x73) = §(0) = —m [ [(x37) + 5 ) [mﬁ? H,(w%)] =« 9 <—m +) ml-)

where the last equality holds because Y- | m; = m, and for2 <1 < L,

K’Yz) ij[ mi; [T (k77 —x7 ]

L
gv(K’ﬁZ) (m + K’Yz H KV — K’Yl (K +
i=2 j#Li

(. /
~"

=0

k+1 _ - - -
= (K +— K'ﬁ) - I (K’y]2 — Kk57),
N _ j#1

-~

>0

whose sign is (—1)'~2. Thus, by the continuity of ¢(-), it must have a positive root in
(K’?lz, K’?lzﬂ), for] =1,2,...,L —1. In addition, as shown in (529), §(-) also has a zero
root. Combined with the first part, we can know that (a) and (b) in Lemma S1.4 holds.

Fourth, we prove (c). Consider first the sign of the limit of g(6) as 6 — —co. By
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definition,

lim 9~ ("1 ¢(9)

0——co

zelim { (m/6+1) ﬁ (ky?/0—1)+ 671 ( /9+K+1> i [’y?H(K’ﬁ/G—l)]}
- i=1 i=1 j#i

— (_1)m+1.

Consequently, g(0) is positive when 6 is sufficiently small. Consider then the sign of
¢(8) when —7~! < 6 < 0. By definition, for § < 0,

~1
[l—[(mf - 9)] 8(6)

i=1
>0
__(m+9)+( +K+19> i v =—(m+0)+ (1+19) i K9
i=1 K’)/lz_e i=1 Kr)/lz_e
:i K7+ T _gzirﬂwﬁ—l—(%_g_e im’yl—l—l
Sl xr-0 = k-0 = ky? -0
(e + T
:9[212—_9—1 . (S30)
i=1 K7

When —77! < 6 < 0, we have T=! > —6, and thus xy? + 7! > xy? — 6. This then
implies that

1 -
[Hm%—e)] 30) =0, il ke >—1]

K'yZ

O(mt —1)
_9(K~|—1 1)
K

<0

Consequently, ¢(0) is negative for & € [~7!,0). From the above, g(-) must have a
negative root in (—oo, —7~!). Thus, (c) in Lemma S1.4 holds.
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From the above, Lemma S1.4 holds. ]

S1.2 Integral representation of the rejection probability

Lemma S1.5. Recall the test statistic Ty, in (8). Let {6;}7+" be the roots of the function g(-) in
Lemma S1.3, with 0,41 being the unique negative root, and go(6) = TT/1' (6 — 6;). Then for

any ¢ > 0, any positive 0,11, and any nonnegative o, . .., O,

m—=1 m—=1

1O y1l s 2 1 10411 S 2
Pt > = 7 | TEEs 7 et

Proof of Lemma S1.5. Let {¢;}"! be i.i.d. standard normal random variables, and ¢ =

(&1,&2,..., Emy1) . From Lemma S1.1, the probability that | Ty,| > c is equivalent to:

P[|Ty| > c] =PV < 0] = P[¢' DVDE < 0] =

m+1
Z M7 <0
where Ay, Ay, ..., Ay are eigenvalues of DV D or equivalently the roots of the charac-

teristic polynomial in Lemma S1.2. From Lemma S1.3, it can be further written as

m—+1

2A(§2<0

m—+1

Z /\ m+1€1 <0

P[| Ty | > ¢]

m-+1
2@§<4.
=1

Using Makshanov and Shalaevskii (1977, Theorem 2), we can write the probability as the

following integral:

dt.  (S31)

P[|Tyy| > c] =P [m—ﬂ

2 1
o ] /VH 1+

By some algebra and the definition of go(+),

H {1 - |9m+1| (1 +t)}
:ﬁK 1+t )|§LI\]:<QLQ)%( 1+t )

:(1+t> (|0m—|—1|_|9 +1|) 1m+1( )
m+l| 1+t " i=1




I
|
| =
A~
?r—\
T+
=
~__
3
+
—_
. 3
—3
AN
A~
»—\SE
+ 15
=
+
-
I

1/ 14¢\"mtt /g,
_qym+271 . m+1 N
= t( ) H( 141 91)

|9m+1| i=1

m—+1
t ’0m+1’ 14+t

We can then write (S31) as

1 (1+87" 0|
Pl > L [ OED " Mo
0 [(=D)"go(=F5)]
After a change of variable with s = |91m++t1| and ds = —|0,,.1|(1 + t)~2 dt, this further

simplifies to

RO L () e KL T) OV Ny " .
il == ”/|9m+1| [(~1)mgo(=s)]2 [l ‘ ”/0 [(—1)mgo(—s)]2 -

Note that, by definition, g(0) and go(6) are both polynomial functions of 8 and have
exactly the same roots. Hence, they must be a scalar multiple of each other. Because the
coefficient of 0"+ in ¢(#) is (—1)"*! and the coefficient of 6”1 in ¢o(6) is 1, we have
g(8) = (—=1)"*1. ¢o(9). Consequently,

m—1

€11 s 2 1 161111 S 2
Pttt =7 h e

From the above, Lemma S1.5 holds. O

Lemma S1.6. Recall the test statistic Ty, in (8) and consider any ¢ > 0, any positive 0,11, and

any nonnegative oy, . ..,0y. Define x = nTCy T = KKJle, and y; = —forz e {1,...,m}.

Let 0,1 be the unique negative root of the function g(-) in Lemma S1.3. Let x; = K7 for
ie€{l,...,m}. Then,

et
PT| > = L [ @),
|9m+1|_s
where x = (x1,...,Xm),
5%1*1 UL 1+ 7x; n
U(x,s) = , )= ! , x,s) = x;+5).
(@) \/P(m,s)Q(m,s) l_zl (xi+5)(xi — Opt1) Q) E(l )



Proof of Lemma S1.6. By the same logic as (530), for 8 < 0, we have

T2 —6) - mw_ _m - Txi 1
—E(K% 9)9<Z > 1)—H (le 1>. (S32)

i—1 X7; i=1 i

Because ¢(60,,+1) = 0 and 6,411 < 0, we must have

o1+ TX;
1=) —. S33
i_zl Xi — Ot (533)
Substituting (S33) into (532), we can write g(0) for 6 < 0 as
n i+l & 141X
0) = —0)-6 ! — :
g( ) E( ) <; xi — 0 IZ; Xi — 9m+1>
m m 1
= xi—06)-60 1+ Tx ( )
E( i—0) i;( i) o R
n u 1+ Tx;
= xi—0)-60(6—10 S34
g( i ) ( m+1)i:21 (xl 9)(xi_9m+1) ( )
Substituting (534) into the integral representation in Lemma S1.5, we then have
4l s"T
P[|Tn| > c] = /0 = — ds
\/ T (xi +8) (=) (=5 = Ou11) Bt oyt
167411 71
_ 1 / +1 S2 — ds
0 \/I—L 1(xi +8) (=8 = Om1) Lilh oGy
|9m+1‘ S 2 -1
= = / ds
nh Q) P@s) (Bt )
/|9m+1 u CU,S)
wm—&-l’ - S
Therefore, Lemma S1.6 holds. O

S$1.3 Derivatives of the rejection probability

Lemma S1.7. Consider the same setup and notations in Lemma S1.6. Fix c,x3,..., Xy, and

Omi1, and let z = x1 > 0 and w = xp > 0, where we view w as a function of z as implied by
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(S33). Define A = Z;w)z, A=wz— 9%1“ and B =z + w — 26,,,1. We then have

(z=0m+1
ow _ (w — 9m+1)2
%= B o
OP(z,s)  2A(1—1s)[A+ 5(s — Opia)]
9z (z+5)2(w +5)2 ' (536)
BQ(az,s) B n
> A(A+Bs) [ J(xi+5s) (S37)

=3

Proof of Lemma S1.7. From Lemma S1.4, 6,,,1 < —7 !, which implies that —16,,,1 > 1.

1—|—Tw

Consequently, is increasing in w, because

d 1 —716 —1
(1) o =rtea=l

% w — 9m+1 (w - 9m+1)2

This ensures that w can be uniquely determined by z through (S33), once we fix ¢, x3, ..., x

and 0,,,1. Below we prove the three derivatives in (535)—(S37) separately as follows.

¢ Proof of (S535). From (533), we have

1+ 712 . 1+ Ttw . 1+ Ty
z=0ny1 W—O0ui1 X — Ot
N——— —
“Constant”

1=

Taking derivative of the above gives

(z = Omi1)? (W —0pny1)?

As discussed before, —16,,.1 > 1. We then have

a_w _ (w — 9m+1)2
0z (z—0,11)2
i.e., (535) holds.
e Proof of (S36). Let p(x) = %. We have
dp(x) = X +2x4 (5 =01 +50u17T) TP +2x+4d
dx (x +5)*(x = Ony1)? ()P = )
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where d =5 — 041 + 50,417 = 5(1 + 0,41T) — Oy11. Using (S35), we have

9P(z,s) _ dp(z) | dp(w)dw

0z dz dw oz

122 +2z+d N Tw? +2w+d (W —0p41)?
(z45)%(z = Ons1)*  (W+5)*(W—=0ns1)? (2= Ops1)?
—(t22 + 2z +d)(w +5)? + (tw? + 2w + d) (z +5)?

= @+ 52z +3)2(z =0y )2 : (538)

The numerator of (538) can be simplified as follows:

— (122 + 2z 4+ d) (w +5)* + (tw? + 2w +d) (z +5)?

= (z — w)[2wz(1 — 1) — (w + z) (75> — d) + 2ds — 25?]
= (z—w){2wz(1 — 15) — (w +2)[15% — 5(1 + 01 T) + Os1]

+25%(1 4 0,,11T) — 250,11 — 252}
= (z—w){(zw — 972”“1[2(1 —15)] — Sw +z 120m+12[1—52 —s(1460417) + 011

—A —B
+ gsz(l + 01 T) — 280,11 — 287 + 2051 (1 — T8) — 20,41 (T8> — 5(1 + 0y 17) + 9m+1l}
=0

= (z—w){A[2(1 — 15)] — B[ts* = 5(1 4 0, 1T) + O]}

=(z—w){A2(1—71s)] = B(ts —1)(s — 0,41) }

— 2(z—w)(1 — 75) A+§(s—9mﬂ) , (539)

where the definitions of A and B follow from the statement of the lemma. Next,
substitute (539) into (S38) and using the definition of A, we have

oP(xz,s)  2(z—w)(1—1s) [A+ 5(s = Ops1)]
oz (w5 (z 45z Oy )?

[A + g(s - 9m+1)]
(w+5)*(z+5)>

= 2A(1 — 7s)

Thus, (S36) holds.
¢ Proof of (S37). By the definition of Q, we have

m

Qz,s) = (w+s)(z+s) [ [(xi +5).
1=3 _
“Constant”
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Using (S35), we have

d ‘ s
[(W+SL(Z+S)] = (w+s)+ (Z+S)£ = (ws) - (ZJFS)((Z;_ Gm:))Z
_ )z 6,) +5(z 4w 260)
(z—6p41)?
= A(A+ Bs). o
Thus,
an’B/ 5) = A(A + Bs) Im—[(xi +5s),
z i=1
i.e., (537) holds.
[]

From the above, Lemma S1.7 holds.

Lemma S1.8. Consider the same setup and notations as in Lemmas S1.6 and S1.7. We have

oU(x,s)  Ah(z,s)U(z,s)

- s

oz 2

where

Ep(a:,s) + le(a:,s),
2(1—138)[A+ B(s — 0ps1))]
(z+5)*(w+5)*P(z,s)

o (,5) = A+ Bs
QY2 = (w+s)(z+s)

h(z,s)

4

Proof of Lemma S1.8. By definition,

ou(z,s) 5271 { oP(zx,s) b aQ(w,s)}
= A nQal e T
 U(z,s) 1 9P(z,s) 1 0Q(x,s)
=2 [P(m,s) = Qlws) oz } (541)
zh;(rm,s) Eh(;(rm,s)
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From Lemma S1.7, hp(x,s) and hgo(«,s) have the following equivalent forms:

_2A(1—78)[A+ B (s — 6,41)]

hp(x,s) = (z+9)2(w+3)2P(,s) = Aflp(:c,s),
_ AMA+ BT s(xi+s) _ A(A+Bs) _ s
ho(z,s) = Q(az,s)3 ~wiaers M),

where the last equality in each of the above two equations follows by definition. Substi-
tuting the above into (541), we then have

Ms) _ Yy, 5) + ho(a, )]
— _%’S)A [hp(z,s) + ho(w,s))
_ U(zys) , »
= Ah(z,s),

where the last equality holds by definition. Therefore, Lemma S1.8 holds. O

Lemma S1.9. Consider the same setup and notations as in Lemmas S1.6 and S1.7. Let § =
A+ 5(s—0y41). Then, we have

9A

o= = A4, (S42)
B
2. = AB, (S43)
BN
o = A (S44)

Proof of Lemma S1.9. We prove the three derivatives in (542)-(544) separately as fol-
lows.

* Proof of (542):

a_A w a_w (w — 9m+1)2
0z oz (z—041)2

® Proof of (543):

PR (z—0p41)?
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* Proof of (544):

95 0A  0B(s—0p41) AB B
$_§+£—2 —AA+7(S_9m+1)_A5'
From the above, Lemma S1.9 holds. O

Lemma S1.10. Consider the same setup and notations as in Lemmas S1.6-51.9. We have

aflp(w,s)

= Ahp(z,s)[1 — hp(z,s) — 2hg(z, )], (S45)
w = Alhg(z,s) — ho(z,s)?. (S46)

Proof of Lemma S1.10. We prove the two derivatives in (545) and (546) separately as

follows.

* Proof of (545): Let § = 2(1 — s)d. By definition,

y 2(1—78)[A+3(5s — 0p11))]

he(@5) = = 2w T 5)2P(a, 5)
B 2(1—1s)d
~ (z+3)X(w+5)?P(x,s)
B 5
~ (z+98)2(w+5)2P(x,s)’
Thus,
Bﬁp(m,s) o i 5
0z 09z (w+s)%(z+5)2P(x,s)
B 1 ) ) 96
= TG TIPE { [(w+9)2(z+5)P(=,5)] 5
O(w+5)%(z+5)*P(z,s)]
4 - } (S47)
From Lemma S1.9, we have
96 ) <
3 = 2(1— TS)E =2A(1 — 15)d = A9. (548)
Next, using the definition of § in Lemma S1.9 and using the expression of apg:;;,s)
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from Lemma S1.7, we obtain

0[(z +5)*(w +5)?P(x, s)]
0z
= (z+s)2(w+s)2—apgz's) 8[(z+s)sz(w—|—s)2]
,0P(x,s)
z

+ P(x,s)

I(z+s)(w+s)]
0z

5 +2P(x,5)(z +s)(w +s)A(A + Bs)

= (z+9)*(w+s)’— " +2P(x,5)(z +5)(w +5)

AS
(z+5)*(w+s)
= A5 +2P(x,s)(z +s)(w +s)(A + Bs)], (549)

= (z+5)}(w +5s)?

where the second last equality follows from (S40). From (547)—(549), we then have

8hp(a:,s)
0z
_ Ao[(w+5)*(z+5)?P(x,s)] — AS[0 + 2P(x,s)(z+s)(w +5) (A + Bs)]
B (w+5)%(z +5)4P(x, 5)?
AS[(w +5)%(z +5)?P(x,s) — 5 — 2P(x,s)(z +5)(w +5) (A + Bs)]
(w+8)*(z +s)*P(x,s)?

AS ) 2(A+ Bs)

= W sPE1) @) | Wizt P(ms) (@t zts)
= Ahp(a;,s) [1 — fzp(ac,s) — ZEQ(m,S)] ,

w

where the first equality follows from (S47)—(549), the second and third equality fol-
lows from rearranging and simplifying the fractions, and the last equality follows
from the definition of ip(x,s) and hg(z,s).

e Proof of (S46): From the definition of iig(x,s) in Lemma S1.8, we have

aEQ(%S) 0 (A+ Bs) (w+s)(z+5s) a(AatBs) —(A+ BS)—a[(er;)z(ers)]
oz~ oz(w+s)(z+s) (w+5)2(z +5)2
~ (w+s)(z+s)A(A+ Bs) — (A+ Bs)A(A+ Bs)
N (w+5)2(z +5)2
_ A(A+Bs) A(A + Bs)?

T (wHs)(z+s) (w+s)2(z+s)2
= A[sz(a:,s) —le(w,s)z],

where the third last equality follows from (540), and the last equality follows from
the definition of hig(z,s).
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From the above, Lemma S1.10 holds. ]

Lemma S1.11. Consider the same setup and notations in Lemmas S1.6—-51.9. For any function
r(x,s) of ¢ and s, define

_ Om+1l 7 (z, s)U(z, s)

= — ds.
|9m+1| -5

From Lemma S1.6, P[|T,,| > c¢] = L(1), where 1 here denotes a constant function taking value

one.

(i) The first and second order derivatives of P[|T,,| > c| over z have the following equivalent

forms:
aﬂ;[ﬂ;ﬂ > _ —%L(Fl($ 5)), (S50)
PP[|Tu| >c] _ L(h(z,5))9A A? 3A?

022 2 9z 2 L(h(, ))+TL(ﬁ(w,s)2). (S51)

2
(ii) If ¢ # m12, # w, and W = 0, then we must have %ﬁbc] > 0.

Proof of Lemma S1.11. We first prove (i). We prove the two derivatives in (550) and (551)
separately as follows.

e Proof of (S50): From Lemmas S1.6 and S1.8, the derivative of P[|T,,| > c] with

respect to z is

8]P[|Tm|>c l/ﬂmﬂlau x,s 1
7T

V |6m+1| —S
_ _A/| On1l fi(x,s)U(x,s) ds
27T Jo

V |9m+1| —S
A

= —2L(h(z,s)).

ds

N

* Proof of (S51): Using (S50) and recognizing that A, h, and U are functions of z, we

have
0°P[| Ty| > ¢]
0z2
_ L(h(z,s))0n A [1Pwil [9h(z,s) oU(x,s) - 1
-2 2 Ues) + S () | e s
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ds

L(h(x,s)) 0A A/|9m+18fz(a:,s) U(z,s)

2 0z 2wl 9z \/|0y41] —s

2 0l
A/ 52— L@ g
0

47t \% |9m+1| -8
~ L(h(z,s))0A A [(Oh(x,s)\ | A* -
=5 & a2t ( 52 ) g Las)), (552)

where the second last equality follows from Lemma S1.8. By the definition of

h(x,s) in Lemma S1.8 and from Lemma S1.10, we have

[h(x,s) — h(x,s)?]. (553)

072 - 2 0z 2

We now prove (ii). Because z # w, A is nonzero. From (S50) and the condition in (ii),

L(h(x,s)) must be zero. From (S51), we then have

PP[|T| > ] L(h(x,s))9A A_ZL(E(%S)) N 3_A2L(ﬁ(wls)2) _ 3TA2L

022 2 oz 2 i (h(z,s)%) > 0.

From the definition of U(x,s) in Lemma S1.6, we can know that U(x,s) is positive for
s € (0,|0y41])- Therefore, L(i(x,5)?) = 0 if and only if i(z,s) = 0 for all s € (0, |6,11])-
Note that, by the definition of /i(x,s) in Lemma S1.8, for any s € (0, |8,,41]),

2(1 —1s)[A+ B(5s— 0i1)] A+ Bs B
(z+5)*(w+5)?P(x,s) (w+s)(z+s)
)
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where

(xi +5)

=

X(5) = 2(1 = 75) [ A+ 5 (s — Ops1)]

~
Il
—_

agE

+ (A+Bs)(z+s)(w+5s) (S54)

[H(xi +s)- At

jAi Xi — Gm—H

1

I
—_

is a polynomial function of s. Note that the coefficient of s”12 in (S54) is

o1+ Ty
—Btr+B)Y — =B(1—r71
i_zlxi_enﬂ—l ( )

where the first equality follows from (S33), the second equality follows from the def-
inition of 7, the last equality follows from the definition of x, and the last inequality
holds because B = z 4+ w — 26,,,1 > 0 and ¢ # m /2. Thus, (S54) cannot be zero for all

s € (0,|6,+1]). This implies that L(/(z,s)?) must be positive. Consequently, %
is also positive.
From the above, Lemma S1.11 holds. ]

S1.4 Bounds on the derivative of the rejection probability
S1.4.1 More accurate bounds on the unique negative root 0,, 1

Lemma S1.12. Consider the same setup and notations in Lemma S1.6. For any x > 0 and
integer 1 < k < m, define

h0;x,k) = —(k—1Dx—[m—x+(m+1—k)tx]0 + 62

(a) Forany x > 0and 1 < k < m, h(6;x, k), viewed as a function of 6, has a unique positive
root, which is denoted as 6(x, k).

(b) 0(x,k) >m forany x > 0and 1 <k < m.

(c) 0(0,k) =m forany 1 <k <m,and 0(x,1) = m+ x/x for any x > 0.
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(d) Forany 1 <k <mn, |0yi1]| > 0(x(), k) = G(K'y%k),k), where vy < v2) < -oo < Ym)
are the sorted values of {v;}""

{x]}]:1

Proof of Lemma S1.12(a)—(c). First, we consider the case when x = 0. In this case,
h(0; x,k) simplifies to h(;x,k) = —m0 + 6% = 0(6 — m). Obviously, h(6;x,k) has a

unique positive root at 0 = m.

i1 and x(qy < X(p) < ... < Xy, are the sorted values of

Second, we consider the case when k = 1. In this case, h(6; x, k) simplifies to h(0; x, k) =
—(m—x+mtx)0+6? =0{0 —m— (mt—1)x}. Note that mt —1 = m- (1) -1 = 1 1 by
definition. Consequently, h(6; x,k) = 6(0 —m — £). Thus, h(6; x, k) has a unique positive
root at 0 = m + £.

Third, we consider the case when x > 0 and k > 1. In this case, h(0;x,k) = —(k —
1)x < 0. Note that h(6; x, k) converges to infinity as 6 goes to positive or negative infinity.

Thus, h(6; x, k) must have one positive root and one negative root.

From the above, (a) and (c) hold. Below we prove (b). Note that, for any x > 0 and
1<k<m,

him;x,k) = —(k—1)x — [m — x4+ (m +1 —k)tx] m + m?

= —(k—Dx+mx— (m+1—k)tmx
=(m+1—-k)x(1—1m)

= (m+1—k)x (1—"?21) <0,

where the last equality follows from the definition of 7. By the property of quadratic
functions, we must have 6(x, k) > m, i.e., (b) holds. O

Proof of Lemma S1.12(d). From (S33), we know that

1zzﬂzz;+z ™o 1 Z Om+1 T P

i— X T Om+1 i—1 Xi Om-+1 i—1 Xi 9m+1 9m+1 = Xi — O i—1 Xi Om-+1
SE () (a0 ) B o
= — —1|+7 = — .
Om+1 1_21 Xi— 9m+1 121 Om-+1 Om-+1 g{ Xi = Omt1 Omta
(S55)
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Consequently,

m X
0=—(m+0ps1) + 1+ 10m41) Y —é
j=1% — Ym+1

From Lemma S1.4(c), 1+ 160,,+1 < 0. Because x/(x — 6,,41) is increasing in x > 0, we
have, for any 1 < k < m,
m x].

0=—(m+60ps1)+ (1 +T0p11) ) ——— 5
=1 x]_ m—+1

m
= —(m+041) + (1 +70,41) Z 9
j=1 x m—+1
X (k)
< —(m+0p11) + (1 +10p41)(m+1—k) :
X(ky = Omt1

Multiplying both left-hand and right-hand sides by x ;) — ,+1, we have

0 < —(m+0ms1) (X — Oms1) + (1 + T0ni1) (m +1 —k)x
= —MX(k) + m9m+1 — Gm—i—lx(k) -+ 9%1_1_1 + (m +1— k)X(k) + (I’Fl +1-— k)X(k)TGm_H
= —(k — 1)X(k) + [m — X(k) + (m +1-— k)TX(k)] Omr1 + 9%1+1

= —(k =Dy — |m = x + (m + 1= k)T | 1] + 101,

ie., h(|0y11];x,k) > 0. From Lemma S1.12(a) and the properties of quadratic functions,
we know that |6,,11] > 0 must be no less than 0(x ), k). O

Lemma S1.13. Consider the same setup and notations in Lemmas S1.6 and S1.12. [0,,11| <

m—+ X, /K =m+ ’y( Y recalling that X(m) = MaX1<i<m Xi and Y(m) = MAX1<i<m Vi-
Proof of Lemma S1.13. From (S33) and by the same logic as the proof of Lemma S1.12,

m X
0=—(m+0ps1) + (1 +10m41) Y. —é
j=1% — Ym+1

From Lemma S1.4, 7|6,,11| > 1. Because  is increasing in x, we then have

X
x+1011
m .

x] THX(m)

6 —m = (7|0 — T = (T8 FYNERT
[Om-1] (161 )]Z X+ |01 — = (@lfmia| 1) X(m) + |Om1|

63



which further implies that

() T 10mr1 D) (B | —m) < (T|Opi1| — D)mx ()

= X Om1| + (O |* = mx () — 1|81 < TG [1x gy — 11y
= (X + 01| — m)[Oga| < T{Opsr [mix

= X(y) t O] —m < Tmx(y

= |Opy1| < m A+ (Tm —1)x(y :m+@:m+ﬁm>,

where the last two equalities follow from definition, recalling that T = % Therefore,
Lemma S1.13 holds. ]

S1.4.2 Lemmas for bounding the derivative of the rejection probability

Lemma S1.14. Consider the same setup and notations as in Lemma S1.6. Suppose that z =
maxq<i<y X; and |0,,41| € [0,0] for some 0 > m. For any given v € R, define

s'U(x,s)

G(s) = @ts)(zts)

Then for any s € (0, |0,,411],

dlog G(s) >1 B
ds s

1+ 0 + 0__ _o-m
2(z+6) w+6 2T0-1)|]"

Proof of Lemma S1.14. Using the definition of U(z, s) in Lemma S1.6, we have

log G(s)
m 1 1 (S56)
= (5 -1+ 1/) logs — ElogP(a:,s) ~5 log Q(x,s) — log(w +s) —log(z +5s).
Since, by definition,
E)P( i 1+ 7x;
= (xi+5)2(xi — Opy1)’
we have
m 14+7x;
dlogP(xz,s) 1 dP(z,s) = Zi=1 (152 (xiOmr1) (S57)
0s ~ P(x,s) 9s m LTy, '

=1 (x;+s)(%;—Op11)
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Recall that z = maxj<j<,, x;. It follows that % < ijLS for any 1 <i < m. Thus,

14+7x; 1 m 14+7x;

m
dlog P(w,s) _ Li=1 sl (n-fyn) - 2+5 D=1 is)(-Oyry) _ L 358
s oy Mo = ym v g4 (558)
=1 (x;+s) (x;i—Op11) =1 (x;+s) (xi—Om+1)

Since, by definition, log Q(x,s) = Y./ ; log(x; + s), we have

BlogQ(m,s):i 1 . (559)

Combining the results from (557)-(S59) into (556), we have

dlogG(s)_(T_l_i_v)l_}alogP(m,s)_1810gQ(a:,s)_ 11
ds S \2 2 ds 2 0s w+s z+s
m 1 1 1 13 1 1 1
> (= -1 -+ = - = — —

—<2 + ) Jr22-1—5 2l.zzlx,-+s w+s z+4+s

14 1 1

ERECVE U U 2N B
25 \s  xi+s s 2(z+s) w+ts

_li xi  1-v 1 1
25 A xi+s s 2(z+s) w+s
1 | & x; s 2s
== —2(1—v) — - .
2s .Z:xi—i—s ( v) z+s w+s (560)

Below we bound the terms in (560).

We first bound the first term in (S60). Because s < [0,,11| = —0,,,11, we have

m xi

DBl D s
im1Xi s i3 X = O

Next, from (533) and (S55), we know that

1 u X; m
1 = _— —|— T) ! — .
(em—i-l 1_21 Xi —Ony1 O
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Consequently,

m m /(2
Z Yoo Xi _ 1+9m+1 _ O —m O] —m
p— - 1 — e
xits T ZHxi—0pn 4T —TOp— 1 T|Opa] -1
i=1 i=1 [
_ 4 mt—1
B .
T‘Gm—l—l‘ -1

Because, by definition, mt = "TH > 1, using the condition that 7|6,,,1| > 78 > ™m > 1,

we then have

m

X; mt —1 mt — 1 0—m
Z i >T_1— -1 -1 -1 —
i=1

> — = .
Xi+s B T|9m+1|—1_T B -1 716-1

We then bound the third term in (560). Because Z%rs is increasing in s > 0 and

s < |011] < 6, we have

S ‘em_;’_l‘ g

z+s = z4 01| T 240

We finally bound the last term in (S60). By the same logic as before, we have

S ‘em_;’_l‘ é

w+s = wH0pi] T w+0

From the above, we have

dlogG(s) _ 1 | & x; s 2s
> - —2(1—v)— -
ds — 2s i_zlxi+s (1=v) z4+s w+s
1[0-m 0 20
> =2 _2(1—v)— —— —
— 25 _TQ—l ( ) z+60 w46
1] 8-m P 6 0
s |2(t0—1) (z+0) w+80
D P 1+ J + 6__ _6-m
s 2z+0) w+6 2(t0-1)|[
Therefore, Lemma S1.14 holds. O
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Lemma S1.15. Foranyv < land ¢ > 0,

¢ sV 1, T(1—-v)
ds = rgividl=v)
o ve= "G
Proof of Lemma S1.15. To begin with, using the properties of beta and gemma functions,
1 4V T(1—1)T(% —
| ax = 1L-VIG) _TA-v)VT (S61)
0 vV1—x I'(s—v) I'(s—v)

The integral (S61) is convergent if 1 —v > 0, or equivalently, v < 1. By change of

variables, let s = {x. Hence, ds = {dx. Therefore,

Cosv g T
/0 \/g—sds_ 0 \/é—gxgdx_g /0 \/1_xdx_\/ﬁg ri-v)’

where the last equality uses (561). Therefore, Lemma S1.15 holds. O

Lemma S1.16. Consider the same setup and notations in Lemma S1.6, and adopt the notations
from Lemmas S1.7 and S1.8. Suppose that z = maxj<j<py X; > 0, W = minj<j<y Xj, |Opt1] <
0 for some positive 0, and T < 1/2. Define

s™V(w+s)(z +s)h(x,s)

F(S) = ’
V ’9m+1’ — S
and
’ o_wz—f’ 1
7 T
= (1-21) wz — 0 . (w+z+26)0 _
(w+z+20)0 z
(a) Foranys € (0,|0m41]),
Bs™V

F(s) > [611C1 + (1= T)s].

V |6m+1| -5

(b) I

) 3 1
v<minq - —-pr—, 1
2 201+1%)
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then

0141|C1 + (1 —1)s] ds > 0.

/|9m+1 sV [
0 \/ |9m+1| — S

Proof of Lemma S1.16(a). From the definition of /i(z,s) in Lemma S1.8, we have

2(A + o) 27s(A + =1 )

(w+s)(z+s)h(x,s) = A+ Bs+

In the following, we bound (562) from below.

First, because z = maxj <<, x;, we have

(w+s)(z+s)P(x,s) = (w+s)(z+s) i (x; +Sl)?;i7figm+1)

z+s 141X
<Xi+s . xi_6m+1)
14+ tx;
Xi — Om1

NgE

= (w+s)

~
Il
—_

>

I
[y

> (w+s)

1

=w-+s>s,

(w+s)(z+s)P(x,s) (w+s)(z+s)P(x,s)

(S62)

(S63)

(S64)

where the last equality follows from (533) and the last inequality follows from the fact

that w > 0.

Second, because w = min;<;<,, x;, we have

(w+s)(z+s)P(x,s) = (w+s)(z+s) i (x; +51)?;C1.Tfi9m+l)

o fw+s 1+Txi)
=(z+s :
( );<xi+5 Xi — Oy
1 1+Tx,-
<(z4s)Y —L =z 45,
( )izzlxi_enﬂ-l

where the last equality follows from (S33).
Third, from the definition of A and B in Lemma S1.7, we know that

s—0
+1+Tm+l(z+w—29m+1)

s+ |9m+1|
2

—0
A—i—STmHB:wz—G%i

= wz — [y [ + (2 + @ +2[6,41])
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z+w
2

zZ+w
=5 (25 ol ) + 02 = B P+ O+ B

z4+w 0 w|0
(2 o) 2 (s ) 4

> (. (S66)

—0 0
A+Thip (aqlmlp) By

z+s - z+s

In addition, because
s € [0, 611,

is monotone in s, we have, for any

A+ ap >mm{A+'9'“T“B A+|9m+1|B}

Z+s z 24Ol

|9m+1‘
>mind AT 2 B A+ [0nwn|B L (S67)
z z+40

where the last inequality holds due to (S66) and that |0,,, 1| < 6.

Fourth, from the previous three parts, we have

(w+s)(z+s)h(x,s)
2(A + i) 27s(A + =i )

= A+ Bs+ —

(w+s)(z+s)P(x,s) (w+s)(z+s)P(x,s)

2(A + g -
> A+ Bs+ ( +Z n 52 ) _ 2T (A + %B) using (S64), (S65), and (S66)

A |9m+1|B _
> A+Bs—|—2-min{ + 22 ,A+ |im§+1|3} 27 (A+$B) using (S67)
Z

A4 ualp A4 16,,.1|B
z " z+0

:(1—2T)A+2-min{ }—T|9m+1|B—|—(1—T)BS

A 1 _A
= 0pa|B- |(1—27)= 2 2. min Mol 72 Bl T +(1—1)Bs
m—+1 B|9m+1| Z 7 Z+§ .

(S68)
Note that
A — wz — |0m+1|2 — wz _ |0m+1|

B|9m+1| (w+z+2|9m+1|)|9m+1| (w+z+2|9m+1|)|9m+1| W+ 2z + 2[011]

- wz B 0 wz— 0

T (w+z+20)0 w+z+20 B (w+z+20)0
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Because T < 1/2, we then have

A 1 _A

A | B T2 B
1 —ZT —+2mln m+1 , m+1 _ _
ST { = 210

7 w28 _ % __zz:Ei=:+_1
> (1—27) wz — _ 42.min (w+2z+26)6 I(w+z+29)f T
(w+z+26)0 z z+0
Note that
wz—8" 1 wz—8"
(w+z+26)0 T2 < (w+z+20)0 +1
v4 a z+0
7 2= = =2
(wz —6)z L2y (wz —67)0 +Q (wz —6)z
(w+z+20)0 2 (w+z+20)0 _(w+z+25)5
z wz—8 8 wz—§2+(w+z—|—2§)g wz + (w +2)§
— Z>—""" 47— — = =
27 w4z+20 2 w+z+ 26 w+z+ 26
— (w+2z)z+220 > 2wz + (w+2)0
— z(z—w)+0(z—w) >0,

which must hold because z > w > 0 and 6 > 0. Thus, we have

A 1 A
A a2 e, ]
1—-27)=——— +2-min il ,—ml - T
( )B|9m+1| { z z+0
2 o__wz 9 1
_— ;ﬂ+
> (1-27) wz 9__+ (w+z+20)0 .
(w+z+20)6 z
=C,

where the last equality holds by definition. From (568), we then have
(w+5)(z+s)h(x,s) > |0,,41|BCy + (1 —T)Bs

This immediately implies that

s (wts)z+9)i(ms) | s
o) = T B > [ BCy + (1 B

Bs™V
= —noo— [|0p1|C1 + (1 — T)s].

- V ‘em—i-l‘ -5
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From the above, Lemma S1.16(a) holds

Proof of Lemma S1.16(b). From Lemma S1.15, for v < 1, we have

/9m+1| sV
0

m+1] —
‘9m+1|
= 0nalCr- |

N |01 g—(v=1)
T L =
= CiV/7T|Bps 2" # (1= 1)V/7 | |2 (5 v)
= \/%|9m+1|%7 % C1+(1—T)§_V] ,
(E ) E_V

where the last equality uses the property of gamma functions. Note that, by definition

—2
wz — 0

1 wz+i(w+z)0
— + - = == >0, 569
(w+z+20)0 2  (w+z+20)0 (569)
which immediately implies that
2 2 wz—?z 1
wz — 0 (w+z+2008 T
G+(1-1)=(1-271 —— —T7+(1-7
=T =( (w+2z+20)0 z 1-7)
=2
— (1-27) wz — 0

wz 9
1]+ (w+z+2§)7+1

- + > 0.
(w+z+26)6 z

Consequently, when v < 1 and 7 < 3, we have

1
C1+(1—T)3
S -

1%

!

!



where the second last equivalence holds because 1C_—1T +1 = % > (0. Therefore,

Lemma S1.16(b) holds. O]

Lemma S1.17. Consider the same setup and notations in Lemma S1.6, and adopt the notations
from Lemmas S1.7 and S1.8. Suppose that z = maxi<j<py Xi > 0, |0y41] < 0 for some positive
0, and T < 1/2. Define

E(s) = sTV(w+s)(z+ s)fz(a:,s)l

V |9m+1| —S

and

wz — 8
C=(1-21) —— —T
(w+z+20)0

(a) Foranys € (0,|0m41]),

Bs™V

F(s) = NPT [10m11]C2 + (1 —T)s].
(b) If
vemnfd ool
2 201+ 1%)
then

|9m ‘ —v
/O S [16ma|Cot (1—1)s] ds > 0.

V |9m+1| — S

Proof of Lemma S1.17. The proof of Lemma S1.17 follows almost the same steps as the

proof of Lemma S1.16, except for a few differences discussed below. For (a), we no longer

2(A+mt1p)

(w+s)(z+s)P(x,s) 2

have (565) and instead bound the second term in (562) by zero. That is,
0, which follows immediately from (S66). For (b), we also have

CG+(1—-1)=(1-27 -7+ (1—-1
2+ (1-7) = ( (w+z +20)0 (1-7)
wz — 0
=(1-21 —+1| >0,
=20 28
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which follows immediately from (569). O

S1.4.3 Bounds on the derivative of the rejection probability

Lemma S$1.18 (Modified from Lemma 1 of Bakirov (1989)). Let F and G be two functions of
x that satisfy the following properties, where 6,11 can be any given negative number in R:

(i) G(x) is not identically equal to zero, continuous and nonnegative on (0,|0,,41|] and
%G(x) is continuous and nonnegative on (0, |6,11]).

(i) F(x) is continuous on (0, |0y,+1|), and there exists some xo < |6y,41]| such that F(x)(x —
xg) > 0and F(x) > 0 for xog < x < |0;41]-

If fow’”“‘ F(x) dx converges and is positive, then fow’”“‘ F(x)G(x) dx converges, and

/O il ()G (x) dx > 0.

Proof of Lemma S1.18. The result mainly follows from the proof of Lemma 1 in Bakirov
(1989), with 1 in the integral limit replaced by |6,,+1| and slightly revised conditions. For
completeness purposes, we prove the lemma with the revised conditions below, although

most of the proof are taken from Bakirov (1989).

First, from condition (i), G(+) is nonnegative and monotone nondecreasing on (0, [0;,+1]]-
Thus, G(x) must have a nonnegative limit as x — 0+. Define the value of G(-) eval-
uated at 0 as this limit, i.e.,, G(0) = lim,_,0+ G(x) > 0. Consequently, G(-) becomes a
continuous and nonnegative function on [0, |6,,11|]. In addition, there must exist a finite
M such that 0 < G(x) < M for all x € [0, |6,,41]].

Second, we prove that F(x) = fxw’”“‘ F(s) ds > 0 for any x € [0, |6,,+1]). If condition
(ii) holds for some xy < 0, then this holds obviously. Below we consider only the case
where condition (ii) holds for some x¢ € (0, |6, +1]). For any x > xo, we obviously have
fxlem“| F(s) ds > 0, since F(x) > 0 for x > x¢. For any x < xo, we have

|9m+1| |9m+1‘ X ‘9m+1|
/ F(s) ds:/ F(s) ds—/ F(s) dsZ/ F(s)ds >0,
x 0 0

0

where the second last inequality holds because F(s) < 0 for 0 < s < x < xp.

Third, we prove that f()wm“| F(x)G(x) dx converges. From condition (ii), there exists
0 < x1 < |6;41] such that F(x) > 0 for all x € [x1, |0, +1|). From the first part, for any x €
[x1, |0m+1]), we then have 0 < F(x)G(x) < MF(x). This implies that fxlf”’“' F(x)G(x) dx

is bounded from the above by M | x'f’”“l F(x) dx and thus converges. We consider then
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two cases depending on the value of x( in condition (ii).

¢ Consider first the case where condition (ii) holds for some xy < 0. Let x be any
number in (0,|6,,4+1]). We then have F(x) > 0 for all x € (0, x3]. From the first
part, for any x € (0, xp], we then have 0 < F(x)G(x) < MP( ). This implies that

Oxz F(x)G(x) dx is bounded from the above by M f ) dx and thus converges.

¢ Consider then the case where condition (ii) holds for some xg > 0. Let x3 < xg be
a number in (0, |0,,11|). We then have F(x) < 0 for all x € (0, x3]. From the first
part, for any x € (0,x3], we then have MF(x) < F(x )G( ) < 0. This implies that
Jo? F(x)G(x) dx is bounded from the below by M [;° F(x) dx and thus converges.

The above discussion then implies that fO 1l (x)G(x) dx converges.

Fourth, recalling the definition of F(x) in the second part, we have £F(x) = —F(x).
For any positive €1 and €, such that €; + €3 < |0,,41/, using integration by parts, we have

|9m+1 ‘ —€2
/ F(x)G(x) dx

€1

O 11]—€2 _
=—/' G(x) dF(x)

€1

= — G(x)F( }|9m+1\ €2+/€|9m+1€2F(x) dG(x)

1

‘9m+1| €2 d —
= —G(|0ms1] — €2)F(|0ms1]| — €2) + Gle1)F el+/ (x)F(x) dx.  (S70)

From the first part and the condition that folg’““' F(x) dx converges, we can know that

|9m+1‘

G(|0m+1] — €2)F(|0ms1| — €2) = G(|0p41] — €2) /|9 . F(s) ds — G(|0+1]) -0=10
m+1|—€2
as e — 0+, and
— |9m+1‘ —
qqﬁ@g—+qm/ F(x) dx = G(0)E(0)
0

as €, — 0+. From the third part, f()w’”+1| F(x)G(x) dx converges. These imply that
0|6m+1| 4 G(x)F(x) dx converges. By letting €1 and € in (S70) converge to zero from the

right, we then have

[ Ew6) dr = cOF0) + [ L6 F) dx (s71)
0 0



From the second part, we know that F(x) > 0 for any x € [0, |6,,11]). From condition (i)
and the first part, we know that G(0) > 0 and %G(x) is continuous and nonnegative for
any x € (0, |0;,+1|). Thus, the right-hand side of (571) nonnegative, and it becomes zero if
and only if G(0) = 0 and L G(x) = 0 for any x € (0, |0y+1|), under which G(-) becomes
a zero function on [0, |6,,+1|]. Because G(x) is not identically equal to zero as in condition
(i), the right-hand side of (S71) must be positive. Therefore, fow'”“‘ F(x)G(x) dx > 0.

From the above, Lemma S1.18 holds. ]

Lemma S1.19. Consider the same setup and notations in Lemmas S1.6-S1.9. Let z = X(m), W
be any one of (x1,x2,...,Xm), 0=m+z/x 0= maxi <x<m G(x(k),k), and

o__wz— 9 +1
o wz— 9 (w+z+26)8 . : _
C= (1-27) (w+2+26)0 T z T, fw=xq,
(1— 2r)% -1, otherwise.

Fix the value of c, the values of {x;}!", excluding (z,w), and the value of 6,,11, and view
P[|Twn| > c] as a function of z. If T <1/2,z > w > 0, and

6+29 _Q—m_l_ 1—7 <1
z4+40 w+06 T—1 1—71+min{C,0}

OP[| Ty | >c]
0z

then < 0.

Proof of Lemma S1.19. Let

0 [2 0 —m
v=1+ — + — — — , S72
2(z4+0) w+6 2(t8-1) o7

and define G(s) and F(s) in the same say as in Lemmas S1.14-51.17:

_ s'U(=x,s)
Gls) = (w+s)(z+s)’
o) = S0+ 5)(z + 5)h,o)

VACETSIEE

for s € (0, |0y, +1|). From Lemma S1.11, we have

OP[| T | > ¢] A - w1l fi(x,8)U(z, )
i AES W .
0z 2 \/\Qmﬂ\ —s
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z—w 1 s'U(x,s) s V(w+s)(z+s)h(x,s)

|9m+1|
__2(z—6m+1)2%/o (w+s)(z+5s) V|Omi1] —s

zZ —w 1 6541

ds

Note that z > w. To prove Lemma S1.19, it suffices to prove that fo‘e"’“' G(s)F(s) ds >0

under the conditions in Lemma S1.19.

First, from Lemma S1.12, § = maxq<k<y 0(x(x), k) > m. From Lemmas S1.12 and
S1.13, we must have m < 0 < |0,,,.1| < 0.

Second, by definition, we can know that G(s) is positive and continuous on (0, |6,,+1]].
Moreover, by the definition in (572) and using Lemma S1.14, we can know that dl%sG(s) >

0 for s € (0, |8+1]]- These then imply that digs) >0 fors € (0, |0p+1]]-

Third, by the definition of C and using Lemmas S1.16 and S1.17 for s € (0, |0+1]),
we have F(s) > BF(s), where

- sV
F(s _
( ) V ’9m+1’ —S

By the definition in (S572) and the conditions in Lemma S1.19, we have

[6,1:11C + (1 - 7)s].

1-7 <
1— 74+ min{C,0}

- 1/<3— 1 = min 5 _ L 1
2 g1+ =S 2 201+:5) |

2(v—1)+ 1

From Lemmas S1.16 and S1.17, we then have fo‘g”‘m F(s) ds > 0. Moreover, because
1 — 1 > 0, there must exists sg < |0,,,1| such that F(s) - (s —sg) > 0 for s € (0,[0,,11])
and F(s) > 0 for sp < s < |0p41]-

From the above, Lemma S1.18 and the fact that B > 0 from its definition, we then

have

/9’”“' G(s)F(s) ds > B- /'9’"“ G(s)E(s) ds > 0
0 - 0 '

Therefore, Lemma S1.19 holds. O
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S2 Proof of theorems and lemmas

S2.1 Proof of Theorem 4.1

To prove Theorem 4.1, we need the following lemma.

Lemma S2.1. Under Assumption 4.1, for any 6 € Rand ¢ > 0, if c # m~ "2 and {(7]2};71:7;1 are
not all zero, then P (P41 — ¥, + 5)? =c282] = 0.

Proof of Lemma S2.1. If 7,11 > 0, then, by the law of iterated expectation, we must

have

Pl($i1 = o +0)2 = 253 = E{P | (Ys1 = $+0) = 4 | 1, ) |
—0, (S73)

where the last equality holds because ¢,,11 is a continuous random variable and has
zero probability mass at any real value. Below it suffices to consider the case where
Om+1 = 0.

From the proof of Lemma S1.1, mc?S2, — m (Y1 — ¢,,)> = ¥V, and ¢ 11 — 9, =
a,Tﬂ), where V and ) are defined the same as in Lemma S1.1, and al = (1, —m_llz).

Consequently,

Pl i1 — B+ )7 = PS3] = Plm( i1 — By + )% = mc2S2)
= P[mc®Sy, — m(Yumi1 — ¥,,)° = 2m(Yms1 — ) — mé* = 0]
—P [ﬂﬁvfp —2méa i — ms? = o]
— P [5TDVD5 — 2méa' DE — mé? = 0} ,

where D is defined as in Lemma S1.2, £ = (&,&,...,Cme1) |, and {{;’i}l’-”;gl are i.i.d.
standard normal random variables. Let DV D = T'AT' be the eigendecomposition of
DV D, where T is an orthogonal matrix, A is a diagonal matrix with diagonal elements
{A; 3, and {A;}"! are the eigenvalues of DV D, or equivalently the root of the
characteristic polynomial f(A) in Lemma S1.2. Let ¢ = ({1,...,{ms1)| = I'' & We can
verify that {gi};”:“;l are i.i.d. standard normal random variables, and £ = I'(. We then

have

Pl($m1 =y + )% = 2S5
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—P [ngvpg —2méa' D& — mé? = o] —P [CTAC — 2méa' DT¢ — mé? = o]

=P
i=1

m+1
Y AigZ —2méa’ DI¢ —mdé* =0 . (S74)

Because 0,11 = 0, the characteristic polynomial f(A) simplifies to

f<A>=—Aﬁ<m2—A>+"“A-m[af I <wf—A>],

i=1 m i=1 | j#i1<j<m

mc2

where x = 5. Let 0(q) < 0(5) < ... < 0y, be the sorted values of {¢;}!” ;. We then

have

- K+1 —
()" fkoly)) = — =0t TT A, — ()} =0,

jmAZj<m
m—1 2 k+1 2 m—1 2 2
(D)™ f 0y 1) = =, A Ty | R G
jFEm—=1,1<j<m

which imply that f(A) must have a root in [K(T(zm_l),KU(Zm)]. If U(zm—1) > 0, then f(A)
must have a positive root. By a conditioning argument similar to (573), we can know

that the quantity in (574) must be zero. If a(zm )= 0, then we have must (7(2].) = 0 for all

-1
1 <j < m, under which f(A) further simplifies to

fA) = (A" (k0 = A) + = = Ay ()"
= (0" (s A=tk
= (_/\)m% {[(m —1)x — 1]‘7(2111) — m/\}
— (—A)m% (m —1)o?, —mA|,

where the last equality follows from the definition of x. Because ¢ # m~1/2 and {0].2}]’.’21

2 2
(mc —1)a<m)

are not all zero, we can know that must be a nonzero root of f(A). By a

conditioning argument similar to (S73), the quantity in (574) must be zero.

From the above, Lemma S2.1 holds. O

Proof of Theorem 4.1. Let 8, ; = \/n(8; — po) for 1 < j < m, Gypi1 = V1(Os1 — 1),
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and 6, = /n(pu1 — o). By definition, we can verify that

where 8, ,, = m~! it 0, and 57 , is the sample variance of {én,j};”:l. From Assump-
tion 3.1, the condition that v/n(yu; — ug) —> 6 as n —» oo, and using continuous map-

ping theorem, we have

~ ~ d —
(Brms1 — O + 60)* — CzS%,m — (Y1 — P, + 8)? — Sy,

where ; ~ N (0, 0']-2) for 1 <j<m+1, {g;}"! are mutually independent, and ¥,, and
S2, are the sample average and sample variance of {;}"",. From Lemma S2.1, when
¢ # m~1/2, the distribution function of (41 — ¢, + )% — ¢2S%, is continuous at 0.

Consequently, we must have

]P[|Tm| > C] =P [(én,m+1 _§n,m + (Sn)z - nggz,m > O]
— P [(leH — P, +6)°— S, > 0] = P[|Tu| > c],

where the last equality holds by definition. From the above, we derive Theorem 4.1. [J

S2.2 Proof of Lemmas 4.1 and A.2 and Theorem 4.3

Proof of Lemma 4.1. Lemma 4.1 follows directly from Lemmas S1.4, S1.5, S1.12 and
S1.13. -

To prove Lemma A.1, we need the following lemma.

Lemma S2.2. Let {gi}?:il be i.i.d. standard normal random variables. For any ¢ > 0 and
(Omg1, 01, e v Om) € learl, define

m 2
Dc(Um+1/ 01,.-- /Um) = <‘7m+1gm+1 —m1 2 aiéi)
i=1

2 1 v 1y 2
—m=1) Y (o - m Yl )
j=1 i=1
pe(Oms1,01, .-, 0m) = P[De(0ms1,01, ..., 0m) > 0].

Consider any given ¢ > 0,0 > 0and 1 < k < m, and let p denote the supremum of
pc(Opi1,01, ..., 0m) over all possible values of (0yy41,01,...,0m) € IRT%rl such that 0,1 <
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PO k), where 01y S o) < - S O denote the sorted values of {c; " 1 That is,

sup Pe(Cpi1, 01, - -« Om).
(Um+1,0'1,...,(7m)€1[{garl 041500 )

p

If c # m~1/2, then one of the following two must hold:

(a) p= SUP (63, 0,0) R, pc(0,01,...,0m),

() p = pc(Omi1,01,---,0m) for some (Gyi1,01,---,0m) € Ry x RY, such that &1 <
POy, where 51y < Fpy < ... < 0(,y denote the sorted values of {7} ;.

Proof of Lemma S2.2. Below we consider any given ¢ > 0,0 > 0and 1 < k < m. Below
we state two properties about f, followed from its definition.

e For any (0y41,01,...,0m) € IRgarl, if 0,11 = 0, then we must have 7,11 < PO (k)-

By the definition of p, this implies that p > sup(,, . jern pe(0,09,...,00).

e By the definition of f and note that the value of p.(0y,+1,01, - .., 0w) is invariant un-
der permutations of (¢, ..., 0), there exists a sequence { (G m+1, Tn1, - - -, Onm) }eq
such that p, = pc(0m+1,0n1, -+, Onm) — P as n — oo and 0y, 41 < poy,; for all n
and all k <1 <n.

First, we consider the case where there are infinitely many 7 such that 2 41 =0.

In this case, we must have p < sup, JeR?™, pc(0,01,...,0m). From the discussion

01,--/Om

before, we must have j = sup(,, .

JeR™, pc(0,04,...,0m), i.e., (a) in Lemma S2.2 holds.

Second, we consider the case where there are only finitely many n such that

0. We can therefore assume (72 i

lowing, we consider two cases, depending on whether the limit superior of max <<, U’“‘ﬂ
= n,m

m—+1 =
1 > 0 for all n without losing any generality. In the fol-

is finite.
Opi . ..
is finite. By th
On,m+1 s te y t €
Bolzano-Weierstrass theorem, there exists a subsequence {(O'n].,m_l’_l, Tnjls -+ an].m) };";1

(i) We consider the case where the limit superior of maxj<j<,

such that —2u - converges to some 4; for each 1 < i < m. This implies that, as

Un,m+

j = oo,

0y. 0y.
De(1, —2—, ..., "
Tnjm-+1 Tnjm+1

) 2} Dc(l,al,. . .,an).

Because ¢ # m~1/2, Lemma S2.1 implies that

the distribution function of D.(1,4,...,a,) is continuous at zero. By the property
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of weak convergence, we then have

On.1 On.m

_ i j _
p — ]1:1’130 pn ]ILI{.E]P[Dc(l, Unj,m+1, c ey 0’11]-,m+1) > 0] — ]P[Dc(l, al, “ e ,an) > 0]
=pc(1,ay,...,an).
Oni
Furthermore, it is easy to verify that pa; = plim; e Tﬂiﬂ >1fork <i<n.

Consequently, (b) in Lemma S2.2 holds.

is infinite. There

(ii) We consider the case where the limit superior of maxj <<, 0‘7 "
- n,m

Tn,m+1
maxj<i<m Oni

Bolzano-Weierstrass theorem, there exists a subsequence {(O'nj,m+1, Tnils -« Unjm) ;‘11

then exists a subsequence such that — 0 along this subsequence. By the

On;m+1 Oni

such that,as j -+ 00, —L—— 3 0and —L—— = b; <1foralll <i<m.

7 maxq<j<m On.l maxi<j<m Unjl

Moreover, at least one of {b;}" , is 1.

These then imply that
On:m+1 On:1 Onim
I’ ] ] \
C(maxlslgm (Tn].l 7 maxi<i<m U’njl 7ot max <<y U’njl ) ’ DC(O' bl/ tety bn)

Since ¢ # m~'/? holds, Lemma S2.1 implies that the distribution function of

D.(0,by,...,by) is continuous at zero. By the property of weak convergence, we

then have
n m+1 On.1 On.m
= lim = lim P|D ! / 0
p ]_)oo pn ]_}Oo [ C(maxl<l<m Un]l maxj<j<m Unjl, ’ maxj<j<m Unjl) > ]

— ]I)[Dc(o,bl,. . .,bn) > O] — pc(o, bl,. . .,bn) S Sup PC(O,O'l,. . .,(Tm).

(01, 0m) ERY,

From the discussion before, this implies that j = SUP (5,,....0) R, pc(0,01,...,0m),
i.e., (a) in Lemma S2.2 holds. B
From the above, Lemma S2.2 holds. l

Lemma S2.3. For any 1 < k < m and ¢ # m~'/2,'2 the maximum rejection probability
pm(c;k, p) in (11) must be obtained at some (04, ..., 0m, Opi1) € Sm(k,p).

Proof of Lemma A.1. From Lemma 52.2, we can know that one of the following two
must hold:

12Gimilar to the footnote for Theorem 4.1 and as discussed in Remark 4.4, we will consider values of ¢
greater than m~1/2 for most conventional significance levels.

81



(a) Pm (C/ k, p) = Sup(gllmlo.m)e]R‘rznO pC(O/ 01y« -- ,Um),
(®) pm(c;k,p) = pc(Fms1,01,--.,0m) for some (Fyy11,01,...,0m) € Ry X RZ, such that
Tmt1 < 00 (), where 0y S0y < .o < denote the sorted values of {7;}" ;.

When (b) holds, Lemma A.1 holds obviously. Below we consider only the case when (a)
holds. When 0,11 = 0, our ¢ statistic essentially reduces to a one-sample t statistic, ex-
cept for a constant scaling term of \/m. From Bakirov and Székely (2006), the supremum
of pc(0,04,...,0m) over (o1,...,0m) € ]Rgo must be achieved when some of {0’]'}71:1 are
zero and the remaining take a some common positive value, such as 1. From the above,
Lemma A.1 holds. O

Proof of Lemma A.2. Lemma A.2 follows directly from Lemma S1.11, noting that z =

K73, where « is a constant depending only on m and c. O

Proof of Theorem 4.2. Consider any given 1 < k < m, p > 0, and ¢ > 0 with ¢ # m~1/2,
When p = 0, Theorem 4.2 follows immediately from Bakirov and Székely (2006). We then
consider the case where p > 0. From Lemma A.1, the maximum rejection probability
pm(c;k, p) is achieved at some finite {(T]-};-”:l. If 0,41 = 0, then the maximizer must have
the form in (i), as shown in Bakirov and Székely (2006). Below we consider only the case
where 0,11 > 0.

Because the rejection probability is unchanged when we scale all the variances {(Tj}}":l

by a positive constant, we must have p;,(c; k, p) = p,,(¢c; v1,...,Ym) for some (y1,...,vm) €

RZ,, where () > p~!and Y1) < Y2 < --- < V() are the sorted values of {7;}1;.
We prove that, besides 0 and pfl, {7i 7, cannot take more than one distinct values;
equivalently, there exists ¢ > 0 such that 7; € {0,07!,v} forall 1 < i < m. We prove
this by contradiction. Assume that, without loss of generality, y1,72 ¢ {0,07'}, and
Y1 # 2. Fix the values of ¢, 73, ..., ym and 0y, 41, and view 7, (c; v1,72,Y3,--.,Ym) as a
function of only 71, where 7, is uniquely determined by 4,c,73,..., 7m and 6,,41. Note
that the condition ) > p~1 still holds when we slightly change the values of ; and
consequently . Thus, v is at least a local maximizer of p,,(c; v1,v2,Y3,--.,Ym) over
a sufficiently small neighborhood of ;. This implies that the first order derivative of

7,,(¢; 71,72, Y3, - - -, Ym) Over 71 is zero, and the second order derivative of 7,,,(¢; Y1, 72, 73, - -

over 'y% is less than or equal to zero. This, however, contradicts Lemma A.2.

Therefore, we must have p,(c;k,p) = p,,(¢;71,...,Ym) for some {'yj};.”:l such that
v; € {0, p_l, v} for1 <i < mand some vy > 0. Again, because the rejection probability is
unchanged when we scale all the variances {(7]'}]’.”:1 by a positive constant, the maximum
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rejection probability must be obtained at some {U]-}}":Jf such that 0,411 = p, and 0; €
{0,1,7} for 1 <i < m and some ¢ > 0.

From the above, Theorem 4.2 holds. O

Proof of Theorem 4.3. Consider any given 1 < k < m, p > 0, and ¢ > 0 with ¢ # m~1/2,
From Theorem 4.2, we have either py,(c;k, p) = pmo(c), or pu(c;k,p) =7,,(c; Y1, -+ Ym)
for some (71,...,vm) € RY%; such that v; € {0,071, 7} for some v € R and Yy = o1,
where 7(1) < () < ... < Yy are the sorted values of {7;}].,;.

Now suppose that the latter holds, i.e., pn(c;k, 0) = 7, (¢; 1, .-+, Ym) some (Y1,...,7m) €
RY, satistying the conditions discussed before.

Let m1 and my denote the numbers of 7;s that take values p_1 and 0, respectively.
That is, m; = Y"1 1(7; = p~!) and mp = Y/, 1(7y; = 0). Consequently, the number
of ;s that take the value v is m — m; —mg, and p,,(c; v1,72,73,.-.,Ym) simplifies to
P (c;0,7v;my, mp) defined in (15). Note that {;}" ; needs to satisfy the constraint that
Y (k) > p_l. Thus, we must have 0 < mg < k—1, m; < m —mp, and v € Ry if
mp > m—k+1and v € [p7},00) if m; < m—k+1. In sum, py(c;k,p) equals to
P, (C;p,v;m1,mg) for some 0 < mg <k—1,m; <m—mp,and vy € Rsgif my >m—k+1
and vy € [p71,00) if my <m—k+1.

From the above, we list possible cases where the rejection probability obtains its supre-
mum value p,,(c;k,p). Thus, pu(c;k, p) must be the supremum over all the cases we
discussed above. We can therefore derive Theorem 4.3. [

S2.3 Proof of Lemma A.3

Below we first give the form of Hy(c;1,...,Ym) in Lemma A.3. For any ¢ > 0 and

(Y1, 72, -+ Ym) € RYy, letk = n’?ﬂ,rz kil X; EK")/iZfOI'l <i< m,xq) < Xy <. <

xm ’/

X () be the sorted values of {x;}!”, and

H (w;c; 71, Ym)
6, 20 6-m 1-1 IR
X(m) + 0 w+0 10-1 1—71+min{Cy(w;c;v1,.-.,7m), 0}

4
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, 8 = maxj<j<im 0(x(j), j) with 6(-) defined as in Lemma 51.12, and

2
_ 2\ w1 =
Con(W; Y1, -+ Ym) = <1 o x(’”)z @ 2008 Ty i =xq)
_g .
(].—ZT)(wzjr]ZZTé)g—T, lfw>X(1).
Then Hy,(c; 71, - - -, Ym) is defined as
Hu(cv1, o ym) = Hoy (22,691, -+ Ym)- (S76)

Proof of Lemma A.3. Note that if ¢ > /2(m —1)/[m(m —2)], then T defined as in
Lemma S1.19 satisfies that
(m—1)mm—-2) 1 m-—2

1
+ m2-2(m—1) “m T T T2

T:K+1:l+i:l+m—1§l
Km m  km m m2c? m

where « is defined as in Lemma 51.19. Lemma A.3 follows immediately from Lemma
S1.19. O]

S2.4 Simplifying the optimization under general relative heterogene-
ity assumption

Below we consider simplification on optimization under general relative heterogeneity
constraint. Specifically, Lemma A.3 can help to simplify the optimization in (16). Consider
any 1 <my <m—1,0 < my < m—mj— 1, and the optimization of p,,(c; p, ; m1,mp)
over either v € [0,00) or y € [p~1,0). Let

_ -1 -1
(’yl,'yz,...,’ym)—(fy,...,z,p yeeas0 /,O,...,O).
m—mq—my my o

Define

.

Hul(c; p,v;m1,mo) = Hy (05671, -, 7m) }

For any p > O and ¢y > oL, if H,(c; p,v;my,mp) < 0, then we can strictly increase
the rejection probability p,,(v1,72,...,Ym) by slightly decreasing one of {fy]-}]’.”:1 that is
equal to 7y and slightly increasing one of {'yj}]’.”zl that is equal to p~!. Importantly, if
the original {v; ;71:1 satisfy the relative heterogeneity assumption for some k, then the
slight changes of the {v; ]7.”:1 will maintain this relative heterogeneity assumption. Con-
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sequently, p,, (71,72, - - ., Ym) cannot be the maximum rejection probability under the rel-
ative heterogeneity assumption.

From the above, if H,, (¢;p,7v; m1, mg) < Oforally > p_l, then SUP., o1 00) P,,(c;p,7;m1,mp)
must be obtained at v = p~1, and SUp, R, 7,,(c; 0, 7v; m1,my) must be obtained at some
v € [0, 07 !]. In other words, we can either obtain a closed-form solution for the optimiza-

tion or restrict the optimization to a smaller range.

$2.5 Simplifying the optimization under relative heterogeneity assump-
tion with k =1

Theorem S1. For any given m > 4, p > 0, ¢ > 12(("1;113)), define the following as a

function of 7:

~ 0 20 0—m 1—71

o (mvie o) = _ __ —1
m(’Y/C/P) K’)’2—|—9+KP_2+9 ’L'Q—1+1—T—|—min{c,0} ’
where@zm—i—’yz,QEm—i—p_z,KEr’,fle,TE%fand
2 202072 -8 1
CE<1—2T+ 2) ke ——+— T
ky=) (ky2 4+ xp=2420)0 K7

Suppose that
PNIm(fy; c,p) <0 forall y > p_l.

Then, the maximum rejection probability p,(c;1,p) under Assumption 3.2 with k = 1

and the given p, m, and c has the following equivalent form:

pm(c;1,0) =P

1
|1 p2+E > c] .

Proof of Theorem S1. First, for any given 1 < my < m—1, p > 0 and y > p_l, we

consider
1 -1 1
LY, ., = (7, Y, e, . S77
(Y Y2 vm) = (0 0P o) (877)
Tﬂ*mlfl m1—1

Recall the definition in (S75) and (576), we have

Hu(c;v1, -0 Ym)
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= H’/,,,L(XZ;C;’Y]/- . 'I’)/m)

0 N 20 _Q’—m+ 1—71 .
Xy +0 xp+8 T —1 1—7+min{Cu(x2¢71,---,Tm) 0} ’
where ¥ = T’r’fi, T = %, X = K’)/lz forl <i<m, X(1) < X(2) < ... < X(y) are the

sorted values of {x;}/", 6 = m + x() /%, 8' = maxi<j<y 0(x(;), j) with 6(-) defined as in
Lemma S1.12, and

2 ) XQX(m) — 62 1
(

Cu(x2671, -0 Ym) = (1 — 2T+
X(m)

Note that (6 — m) /(16 — 1) is increasing in 6, due to the fact that —1 +mt = 1/x > 0,
and 0" = max<j<y, 0(x(j),j) > 0(x(1),1) = m + p~2 = 0, where the last equality follows
from Lemma S1.12(c). We then have
6 20 0 —m 1-7
Hon (S 71,0 9m) = X(m ) + Xo+ 0 19 -1 + 1— 1+ min{Cpn(x2,¢91,--.,7m),0} 1
0 . 2@__Q—m+ 1—71
X(m) + 0 x4+6 T0—-1 1—7+min{Cp(x2;¢cY1,.-.,7m),0}

~—

-1

= Hulc;p,7),

where the last equality follows by definition.

Second, from the first part and the condition that ﬁm(c; p,7v) <0 forall v > p’l, we
know that Hy, (¢c;y1,...,7m) < 0, forall 1 < m; <m,p >0,v7>p Land (y1,...,7m)
defined as in (577). In addition, we have

3(m—1)
¢ mm—3) _ - > 1.

)
2(m—1) [2(m—1) 2(m—3 2m —6
m(m—2) m(m—2) ( )

From Lemma A.3, we know that for 1 < m; < m —1and any ¢,p > 0, p,,(c;p,7;m1,0)

cannot be p,;(c;1,p) for any ¢ > p~1, since we can strictly increase the rejection proba-
bility p,,,(71,.-.,vm) by slightly decreasing one of {;}!" ; that is equal to 7 and slightly
increasing one of {7;}", that is equal to p~ 1.

Third, we consider p,,(c;y1,,) for any v > 0. In this case, p,,(c; v1,,) = P[|Tu| > ¢,
where T, is defined as in (8) with ¢, 1 ~ N(0,772) and ¢; ~ N'(0,1) for 1 <i < m. We
can verify that T, ~ /=2 +m~1t,_1, where t,_; is a t-distributed random variable
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with m — 1 degrees of freedom. Consequently,

c

N

which is decreasing in 1. This implies that sup, c(,-1 o) P (C; Y1) =7, (c;p711,)).

Pu(GvLy) =P[| T > ] =P |[ty_q]| >

7

Fourth, from the second and third parts, we know that p,,(c; 1, p) defined as in Theo-

rem 4.3 has the following equivalent forms:

pm(c1l,p) = max{ max pu(c;k, p;m,0), pmlo(c)}

0<mi<m
’ Pm,O(C)} .

= max {P,,(c;0 " 15), pmo(c) }
|tm—1| >
Fifth, from Bakirov and Székely (2006), we can know that, when ¢ > /3(m — 1)/ [m(m — 3)],

c
o m

:max{]P

c

NrEe

pmlo(c) =P [|tm_1| > \/%C} <P ‘tm—ly >

This implies that

c

C
N N

Therefore, Theorem S1 holds. ]

’ pm,O(C)} =P

pm(c;1,p) = max {]P

S2.6 Proof of Theorem 4.4

We will prove Theorem 4.4 using Theorem S1. Define

- 0 26
Hm,l (r)// C/ p) = 2

. pu— 878

Hm,Z(’Y/C'p) 1= T-|-min{C,0}’ ( )
~ 0 —m
Hup(e,0) = ——5—7

where x, 0,0, T and C are defined the same as in Theorem S1:
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Em_l, O=m+v°, 0=m+p -, T= po—
2 20202 5" 1

CE(1—2T+ 2) ~re __ . (579)
ky=) (ky2 4+ xp=2420)0 K7

By definition, we can then write H, (7;¢,p) in Theorem S1 as
Hu(v;¢,0) = Hyu1(7:¢,0) + Hua(7:¢,0) + Hup(c,p) — 1.

In the following Lemmas S2.4-S2.7, we construct upper bounds H,, 1 (¢, p) and H,, »(c, p)
for Hy,1(v;¢,p) and Hy,2(7; ¢, p), respectively, over all y € (p~!,00); see (S86) and (S96)
for their expressions. We can thus bound H,,(7; ¢, p) over all oy > p~! from the above by

H,y1(c,0) + Hualc,0) + Hus(c,p) — 1.

We then establish the monotonicity of H,, 1(c,0), Hna2(c,p), and Hy,3(c, p) with respect
to c in Lemmas S2.8-52.10, respectively. Finally, we prove Theorem 4.4.

Lemma S2.4. Define H,,1(7;c,p) as in (S78) for v > p~ 1. One of the following statements is
true:

J dH,1 (136,0)

(a) There exists at most one finite o such that vo > p~ ' an T

T=70

(b) Sual0) — 0 for any o > p~.

Proof of Lemma S2.4. Note that H,,1(7;c,p) can be written explicitly in terms of 42 as

follows: ) )
~ _ m+y m+y
H ;C,0) = + ) S80
) = G 42 [ ] (550
The derivatives of the above two fractions with respect to 72 are, respectively,
m—l—’yz
Nrmyrom] _ — s
o(7?) [(k +1)9* +m]?’
and
[ ] L
Y+ (ko2 +m) — Kp ) (882)
a(7?) (72 + (k=2 + m)]?
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Combining (S81) and (S82) gives

dHu1(vi¢,p0)
(7?)
m 2 2
e |, Ol ] _ { 22 om }
o(7?) (%) (V2 + (ko2 +m)]2 [(x+1)7% + m]?

{207 2[(k +1)9* + m]> —m[y* + (o~ + m)]*}
72+ (kp=2 +-m) 2 - [(x + 1) 7% + m]?
{202 [(k + 1) + m] + Vm[y? + (02 +m)]}
(72 + (kp=2 +-m) 2 - [( + 1) 7% + m]?

(Va2 172 ] = Vi (2 )}

_ V202 [+ D)2 + ]+ Vimly? + (ke +m)}
2+ oo 2 m) 2 [+ 1) + ]2

L2 2 = v = [Vt ) — 20 . o

The goal of this lemma is to show either there exists at most one 79 > p~! that

satisfy statement (a), or the partial derivative is constant for all y. Since —aH’g’EA%C’p ) —

Hy1 (756,0)

zfyaHm,l(%'c,p) and we require v > p~! > 0, finding a o such that 2 7y

L I0% =0

T=70

Hy1(7:0,0)

is equivalent to finding <o that satisfy 2 5077 = 0. To this end, it suffices to

=3
consider the scenario such that (S83) equals 0. Because p, x, ¥ and m are all positive,

(583) equals 0 if and only if

[\/ZTZ(K +1) - Jﬂ V= (ko2 +m) — /20 2m. (384)

There are two scenarios to consider.

First, consider the case where \/2p=2(x + 1) — v/m # 0. Then, (S84) implies that

-2 . )
2= Vm(kp~* +m) 20 m (85)

V2072 (k+1) —/m

In (S85), if the RHS is positive, then there is one positive 7 that satisfy the equation.

If the RHS equals 0, then this cannot be the 7y we wish to find because we require
Yo > p_1 > (. If the RHS is negative, then there is no real solution. Thus, in this case,
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there is at most one g > p~! such that W =0.
=70
Now, consider the second scenario where /2p~2(x + 1) — y/m = 0 under the first
case. Then, the derivative is either always positive, negative, or zero for all 7 > p~1

Thus, either statement (a) or (b) is true.
From the above, Lemma S2.4 holds. ]

Lemma S2.5. For any given values of positive c, p, and m, define Hy, 1(y;c,p) as in (S78) for
v > p~ L. Forany v > o=, we have H,,1(7;c,0) < Hy1(c,p), where

Hyu1(c, p) = max {Hm,l (0~%5¢,p), Jimy Hip (77 c,p)}

3(m+p72)  2k+3
= ImaX ’
(k+1)p24+m x+1

(S86)

Proof of Lemma S2.5. Following Lemma S2.4, we consider the following three scenarios.

First, suppose there is no 79 > p~! such that W

= (0. This means
~ T=70_
aI_Im,l (V;C/p) aHm,l (W;C,P)
PI0% Yy

ous for all real vy from (583). Thus, IfImll('y; ¢, 0) is monotone in 7 for all ¢ > p~!

is either positive or negative for all ¢ > p~! because is continu-

Second, suppose that W = 0 for any vy > p~'. This means H,,1(y;c,p) is

constant in -y for all ¢y > p~!

Third, suppose there is one 7y > p~! such that OHn (1ic:0)

37 = 0. For this 7y, it has

=70
to satisfy (585). There are two scenarios to consider as follows:

(i) m(xko=2+m) —/202m > 0 and /20 2(k + 1) — /m > 0.
(ii) /m(kp=2+m) — /20 2m < 0and /20 2(x + 1) — /m < 0.

We first show that scenario (ii) is impossible To see this, assume to the contrary that
Vm(kp=?+m) —+/2072m < 0and /20 2(x + 1) — /m < 0. The first inequality implies

that
Ko 2+ m < /207 2m, (S87)

whereas the second inequality implies that

2072 < K\{Fl . (S88)
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Combining inequalities (S87) and (S88) gives

m
Ko 2 4m < /m- \i—l <

leading to a contradiction. Therefore, it remains to consider scenario (i), i.e., \/m(Kp_2 +

—v/2p72m > 0 and /207 2(xk +1) — /m > 0. From (S83), we can know that

M%W is negative when y < ¢ and positive when 7y > 7. Consequently, m1(v¢p)

is decreasing for 7y < 7 and increasing for ¢y > 7.

From the above, we have:

(a) in the first and second scenarios, Hy, 1(7;¢,p) is either increasing, decreasing, or

constant in ¢ € (p~1, 00);

(b) in the third scenario, H,,1(7;c,p) is decreasing for ¢ € (0!, 70) and increasing for
Y E (r)/()/ OO), for some Yo > 40_1

This means IfImll (7;¢,p) is bounded from above by its endpoints, i.e., it is bounded from
above by

Hya(c,p) = max {Hm,l (0~%e ), Jim Hina (7; c,p)} ,
where

Ao e p) = e 2m+p?) _ 3(mtp?)
m1\0 5GP (K+1)p_2+m (K+1)p—2+m (K+1)P—2—|—mr
m+ : m+y
lim E T 2 1i
,Yg{}o ml(')’ch) ,Ygrc}o (K-l-l)’)/ +m+ 7£r°1° |:r)’ +(Kp 2+m)}
1 2k +3
_K—|-1+2_ K+1°

Therefore, we have proved Lemma S2.5. O
Lemma S2.6. For any given positive ¢, p, m and any v > p~!, define
_ 14 o 15 1 2, 1 o
Dl(fy)—zfy +(Kp +5p +2m>'y +o0 tm,

Do(7) = (K +2)9* + (xm + ko2 + 4m)y* + m(xp 2 4 2m),

_ Di(y)
2 = Da(7)
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Forall v > p~!, we have Z(vy) > Z, where

. 1 1 1
Z= mm{z(mp2 +1)"2(x +2) } 2 max{mp? +1,x +2} > 0. (589)

Proof of Lemma S2.6. To derive the lower bound on Z(v), we will study agg). The

derivatives of D1(v) and D;(7) with respect to 2 are, respectively:

9D (7)

+xp 2+ 1(m~|— )
a’)’ = ')’ o 2 P
algi(zv) — 2k +2)72 + (s + xp 2 + dim).

Using the above, we have

oD
92(y) _ D205 — D (7)%

r {Da(7)}?
_m—p 2k + 1)yt + 2m(m — p~ )y + mk2pt + m? + mp2(2x — 1)]
B {Da(7)}?
4 2
- .

where Z1 = m — p2(k +1)?, Zo = 2m(m — p~2), and Z3 = m[x>0~* + m? + mp~?(2x —
1)]. Let f (72) = Z1y* + Zoy* + Zz be a quadratic function of 72, In the following, we
consider three different cases depending on the sign of Z;.

First, suppose that Z; > 0. Since x > 0, it follows that
Zo = 2m(m —p %) > 2m[m — p 2 (x +1)*] = 2mZ; > 0. (S91)
In addition, Z; > 0 implies that mp* > (x + 1)?, or equivalently,
Kk < pyvm—1. (S92)
Note that Z3 can be written as

Z3 =m0+ 2mrp "2+ m? — mp 2] = m[(kp "2 +m)> — mp 2]
m(kp > +m+/mp V) (ko> +m—/mp™ )
= mp~2(1p™% + m + v/mp™") (1 + mp® — \/mp)
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= mp~2 (ko + m +/mp ") [k + V/mp(/mp — 1)]. (593)
Combining (592) and (593), we have
Z3 > mp (ko2 +m+ /mp 1) (x + /mpx) > 0. (594)

(S91) and (S94) then imply that —% < 0 and %—i’ > 0. If the quadratic function f(-)
have real roots, then, by Vieta’s formulas, the sum of the two roots are negative while
the product of roots is positive, implying that both roots of f(7?) = 0 are negative.
Otherwise, the quadratic function f(-) takes positive values on the whole real line. In
both cases, we have f(7?) > 0 for all ¢ > 0.

Second, consider the case where Z; = 0. In this case, f(7?) = Z»7? + Z3. By the same
argument as in (S91), we have Z, > 0. Note that Z; = 0 implies x = /mp — 1. Using
(S93), we have Z3 > 0. Therefore, f(7?) > 0 for all ¢ > 0.

Third, consider the case where Z; < 0. We consider the following cases.

* Suppose that f(-) has real roots and Z, < 0. Then the sum of the two roots of
f(-) equals —% < 0. Thus, there is at most one positive root of f(-). If f(-) has a
positive root 73, i.e., f(73) = 0, then f(9?) must be positive when 0 < 7 < 7o and
negative when y > 7. Otherwise, f(y?) < 0 for all y > 0.

* Suppose that f(-) has real roots and Z, > 0. By definition, this means /m > p~1,
or equivalently, v/mp —1 > 0. From (S93), because x > 0, this implies that Z3 > 0.
Thus, the product of the two roots of f(-) equals %—i’ < 0. Consequently, f(-) has
one positive root and one negative root. Let 73 be the positive root of f(-), i.e.,
f(73) = 0. Then f(9?) must be positive when 0 < v < 79 and negative when
T > Yo

e Suppose that f(-) does not have real roots. Then the quadratic function f(-) takes
negative values on the whole real line.

From the above, one of the following must hold for f(-):
(i) f(9%) > 0forall v > 0;
(ii) f(7?) <O forall y > 0;
(iii) for some yg > 0, f(7?) > 0 for 0 <y < 79, f(73) =0, and f(7?) < 0 for ¥ > 7.
From (590), we can know that
-1

(i) Z(7y) is either increasing or decreasing in v € (p~*,0);
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(ii) for some 9 > p~ !, Z(7) is increasing for v € (p~!,v0) and decreasing for v €
(70/ OO)

Thus, the infimum of Z(v) over v € (p~!,00) must be obtained at the endpoints, which
immediately implies that, for all v > p~ 1,

2(7) = min { 2(p™"), Jim (1) (599
where
—4 2
Zp ) = 2p—4(fnp2(K++1)p(Km++m1p)2 1) z(mpi +1)
fim Z(7) = 2(;<1+ 2)°

By definition, this then implies that Z(y) > Z for all v > p’l. Moreover, we have Z > 0

because «, m,p > 0. Therefore, we derive Lemma S2.6. O

Lemma S2.7. For any given values of positive m > 4, ¢ > 31((”1:1_—12)) and p, define Hy,o(7; ¢, p)

as in (S78) for v > p~ L. For any v > o', we have Hy,»(7y;¢,0) < Hual(c,p), where

_ 1—7

Hua(c,p) = , 596
2(ep) 1—T+min{[(1—2T)KZ—%],O} %

and Z is defined as in (S89).

Proof of Lemma S2.7. Recall that H,,»(v;c,p) = m with
2 k2202 — 0 1 -
CE(1—2T+ 2> ——+-—> -7 and 0 =m+9°
ky=) (kY2 +Kxkp~24+20)0 K7

Define D;(y) and D;(7y) as in (52.6). We have

(k7* + 102 +20)0 = [(x +2)9* +2m + kp 2] (7* + m)
= Dy (7),

and

— 1 — = 1 - 1 _
(K220 2 —0) + E(K'yz +x0 2 420)0 = 12420 2 + zx'yz@ + EKp’29 = D1(v) -x > 0.
(897)
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By the same logic as the proof of Lemma A.3, because ¢ > / 51({:1:12)), we have 7 < 1/2.
Hence, we have

_ 2 \ Di(y)x —3Da(7) | 1 B 2\ Di(7)re 1
€= (1_2T+mz) Dz('rz) Nz (1_2T+K_72) Dr(y) 2
Di(y)x 1 1 1
> (1-20) 5 B -5 = (- 2mxz(n) 5 2 (1202 — 5, (598)

where the last inequality follows from Lemma S2.6 and that T < 1/2. This then implies
that

1 -7+ min{C,0} > 1—T+min{{(1—2r)1cz-%} ,0} >0,

and consequently

~ 1—-71 1—-7 —
Hypo(v;cp) = : < = Hpyp(c,p).
" =7+ min{C0} = 1 — 74 min{ [(1 - 20)xZ - }] 0} "
(S99)
Therefore, Lemma S2.7 holds. O

Lemma S2.8. For any given values of positive c, p, and m > 2, define H,,1(c, p) as in (S86).
We have that H,, 1(c, p) is decreasing in ¢ > 0.

Proof of Lemma S2.8. By definition,

— B 3(m+p7%) 2k+3
H(c,p) _max{(K—l—l)p—2+m' k+1 [’

2 . . L -2
where ¥ = I is increasing in ¢ > 0. Note that both % and % =2+ Klﬁ

are decreasing in k. These then imply that H,,1(c, p) is decreasing in x. Consequently,
H,,1(c,p) is decreasing in ¢ > 0. Therefore, Lemma S2.8 holds. O

Lemma S2.9. For any given values of positive m > 4, ¢ > i(("r;__lz)) and p, define Hy,»(c, p)

as in (S96). We have that H,,»(c, p) is nonincreasing in c.

Proof of Lemma S2.9. Because « is increasing in ¢ > 0, as shown in the proof of Lemma

S2.8, it suffices to prove that H,,»(c, p) is nonincreasing in x. By definition,

— 1—-71
H c, — ’
m2(e:P) 1— 7+ min{(1—27)xZ — 3,0}
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where

. mc? xk+1 AR 1 1
S om—1 - omx N 2(mp? +1)"2(x +2)
Note that
1 K K 1
1-20)kZ—-=(1-2 i —Z
(1=2t)rz =35 =( Tﬁmn{mmﬁ+1ymx+m} 2
Obviously, Z(mpKz ) and Z(Kiz) are increasing in x, which implies that xZ is increasing in
K+l

. _ 1 1 . . . 1. . .
k. In addition, T = = — + - is decreasing in «. Thus, (1 — 27)xZ — 5 is increasing

mx
in k. Below we consider two cases depending on whether there exists ko > 0 such that

(1 —27)xZ — 3 = 0 when evaluated at x = .

First, assume that such xy > 0 exists. Since (1 —27)xkZ — % is increasing in k, we can
know that (1 —27)xZ — % < 0 for x < xp and (1 —27)xZ — 1 > 0 for x > xo. Thus, for
K 2> Ko,

— 1—-7
Hyo(c,p) =

=L (S100)

which is a constant over all ¥ > «j. For ¥ < x,

— 1-7 2(1—1) 1 1
Hyo(c,p) = = = (1 + ) :
m 1—T—|—[(1—27)KZ_%} (1-27)(142kZ) 142«Z 1-27

(5101)
From the discussion before, xZ is increasing in «, and 7 is decreasing in x. These imply

that (S101) must be decreasing in x € (0,xp). Therefore, H,,»(c, p) is nonincreasing in «.

Second, assume that such x does not exist. Then (1 — 27)xZ — 3 is either positive for

any x > 0, or negative for any x > 0. Below we consider the two cases, separately.

e Suppose that (1 —27)xZ — 3 > 0 for any x > 0. Then H,2(c, p) has the form in
(5100). This implies that H,,»(c, p) is constant over all x > 0.

e Suppose that (1 —27)xZ — 3 < 0 for any x > 0. Then H,2(c,p) has the form in

(S101). For the same reason as in the first case, H,, »(c, o) is decreasing in x > 0.

From the above, Lemma S2.9 holds. ]

Lemma S2.10. For given values of positive c, o, and m > 2, define Hy, 3(c, p) as in (S78). We
have that Hy, 3(c, p) is decreasing in ¢ > 0

Proof of Lemma S2.10. Because « is increasing in ¢ > 0, as shown in the proof of Lemma
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S2.8, it suffices to prove that H,,3(c, p) is decreasing in x. By definition,

0 ~ 0 1 0 o1
Sefina(cp) = —@-m): o (o) =@ -m)

where § = m+p 2 and T = K+1. Because § —m = p=2 > 0,0 > 0, andT = %—F
-Lis decreasing in x, we can know that 2 H,,5(c,p) < 0. Consequently, H,,3(c,p) is
decreasing in x. Therefore, Lemma S2.10 holds. O

Proof of Theorem 4.4. Define H,,(y; ¢, p) as in Theorem S1, H,,1(7;¢,0), Hn2(7; ¢, p) and

H,3(c,p) as in (S78), Hy,1(c,p) as in Lemma S2.5, and H,;»(c, p) as in Lemma S2.7. By
2(m—1)
m(nni—Z)’

definition and from Lemmas S2.5 and S2.7, for any ¢ >

1(7;¢,0) + Hup(7;c,p) + Huglc,p) — 1
1(c,p) + Hm,z(c,p) + Hm,3(C,p) —1. (5102)

Hyu(7;¢,0) = Hy
<H,

In addition, by definition,

Hyu1(c,p0) +Hmz(c p) + Hus(c,p) — 1

3(m+p7%) 2k+3 1-7 0 —m
= max — + - 7 — -1
(k+1)p +m k+1 1 -7+ min{(1 -27)kZ— 5,0} T0—-1
B x{ (mp? +1) 2K+3} 1-71 B p? 1
mp?>+x+1" x+1 1—7+min{(1-27)kZ— 3,0} Tm+Tp2-1
{ (mpe*+1) 2K+3}+ 1-71 B mx B
mp2+x+1 K+ 1 1—7+min{(1-27)kZ— 3,0} mp?+x+1
(S103)

where «, T, 6 is defined as in (579), Z is defined as in (589), the first and last equalities
follow by definition, and the second and third equalities follow by some algebra.

First, from Lemmas S2.8-52.10, Hy,(c,p) = Hp1(c,p) + Huolc,p) + Hus(c,p) — 1
is decreasing in c. Moreover, as ¢ — 00, we have k¥ = mcz/(m —1) — oo, T =
(k+1)/(mx) — 1/m,

K 1
KkZ = 7 =
= 2-max{mp?+1,x+2} 2
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and consequently

H(c,p)
_max{3(mp2+1) 2K+3} 1-7 B mK _1
N me? +x+1" x+1 1—7+min{(1-27)kZ— 1,0} mp*+x+1
1—m!
— max {0,2} + —m—1
(0.2} 1—m1+min{(1-2m1)} - 1,0}
1—m! m—1 (1—m)(m—23)
L S— m+ —— — <0, (5104)

where the last inequality holds because m > 4.

3(m-1)
L o m(m—3) °
Hu(c,p) < 0} must be finite. Because Hy(c,p) is decreasing in ¢, we must have

Hy(c,p) < 0 for any ¢ > ¢

Second, by definition and from (S104), we know that ¢,,, = inf{c >

From (5102) and (5103), we then have, for any given

m,p*

m>4,0>0,¢>cpp > /200 > [20 )

Hyu(v;c,0) < Hu(c,p) <0 forally > p 1.

From Theorem S1, this implies that, for any given m >4, p > 0, ¢ > Cnpr the maximum
rejection probability p.,(c; 1, p) under Assumption 3.2 with k = 1 and the given p, m, and
¢ has the following equivalent form:

pm(c;1,p) =P

1
|1 pz—l—a > c] :

Third, we consider the case when ¢ = ¢, ,. From Lemma A.2, there exist {o1,...,0m41} €
Sm (1, p) such that Po[|Tw| > ¢, p] = pm(cp,;1,p). By the right continuity of distribution
functions, we can know

pm(gm,p; Lp) = Pol|Tw| > Qm,p]
= lim Pol|Tul > €, +

1
< i 2 S
_el—l>r(]):1+IP [t P +m >£’”IP+€
=P ||tu_1] 2+l>c (5105)
- m—11\/ P m ~ el
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where the last inequality follows from the second part. Moreover, the rejection proba-
bility can reach the upper bound on the right-hand side of (5105) when 0,1 = p and
01 = ... = 0y = 1. Thus, (5105) must hold with equality.

From the above, Theorem 4.4 holds. ]

S2.7 Proof of Theorem 4.5

Proof of Theorem 4.5. Because ¢ > 0, we obviously have P[|T,| > ¢] > P[T,, > ¢| =
1 —TP[T,, < c]. Note that

Tn<c <= (Pmy1—90)+0—9P <cSp
<~ Syt — (Pyu1—906)>96
= {cSu+P— (Y1 —0)}* = &,

where the last step holds because § > 0. By the Markov inequality, we then have
P[Ty < ] <PHcSm+ 9 — (Ymi1 —0)}> > 6°] <6 2E{cSm+ P — ($mi1 — 6) 1.

Under Assumption 4.1, we have

E[{cSu +§ — (Yur1 — 0)}2) = E[(cSu + §)2] + E[($ns1 — 6)?]
< 2B[S2] + 2E[§°] + E[(ms1 — 0)],

where the first equality holds because ¥, 1 — 6 ~ AN (0,02_,) and is independent of

m+1
{gb]'}}”:l, and the second equality follows from the Cauchy-Schwarz inequality. By some

algebra, E[(n 11— 6)2] = Var(yui1) = 02, E[§°] = Var(p) = 5 T, 07,

m m 1 m
E[S%] = —— Y E[y?] - —lE — 2
[ m] m— 21 lp] m—1 ]Z 1m2 Zlg m];U]
These then imply that

E[{cSm + — (Ymr1 — 6)}?] < 2E[?S2] + mwﬂ +E[(Yr1 — 6)%]

—2C—Z(7' + = Za + 0244
= m]
2(c* + u
= ;31+1+ (C L Z
=
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From the above, we have

P[Ty < c] <6 E[{cSm+ P — (Ymi1 —6)}7] < (51—2 [aéﬂ + =) 0
and consequently

P[|Tu| >c] > P[Ty>c]=1-P[T,, <] >1- - [a,iHJr—Za?] :

Therefore, Theorem 4.5 holds. O

Comment on the number of one-dimensional optimizations needed. We first count the num-
ber of one-dimensional optimizations needed at a given k. From Theorem 4.3, we
need to consider the one-dimensional optimization in (16) for 0 < my < k—1 and
0 < my < m—mpy—1; note that when m; = m — mp no optimization is needed. Thus,

the number of one-dimensional optimization needed is

k—1 m 1
Y (m—my)= ) jzik(2m+1—k).
mo=0 j=m—k+1

We then count the total number of one-dimensional optimizations needed to compute
pm(c;k,p) for all 1 < k < m. For each combination of (my,mg, m.) satisfying m; > 0,
mg > 0, m¢ > 1, and my + mg + m. = m, we solve the one-dimensional optimization
in (16) at most twice. Intuitively, m, mp, and m. correspond to the numbers of 7]-;.":1
that are equal to p‘l, 0, and a common value 7, respectively. The optimization is solved
at most twice because ¢ may vary from 0 or p~! to infinity. By some algebra, the total

number of one-dimensional optimizations needed is at most

2. <m2+1> =m(m+1).

S2.8 Proof of Theorem 5.1

Proof of Theorem 5.1. By the definition of p,(c;k,p) in (11), we know that it is non-
decreasing in p. Thus, the set Z,, , in (19) must be an one-sided interval. To prove

Theorem 5.1, it suffices to prove the simultaneous validity of the confidence intervals
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T o s as stated in (ii). Let Go(c) = Py[|T;n| > c]| denote the true tail probability of |T;,|
at the true values of {Uj}]’-’fll.

Suppose that p; ¢ Z, ., for some k € {1,2,...,m}. By definition, we then have
Pm(|Twul; k,05) < a and pi < co. By the definition of pj in (18), we must have 0,1 <
Pr0 (k) for the true standard deviation of the treated cluster and that of the control cluster
at rank k. By the definition in (11), this then implies that p,(c;k, p5) > Go(c) for any
¢ > 0. Consequently, we must have & > pu,(|Tiu|; k, 05) = Go(| Tl ).

From the discussion before, we then have
P [of & Ly ux for some 1 <k <m] <P [Go(|Tn|) < a] <a,

where the last inequality holds because Gy(-) is the tail probability function of | T;,| (see,
e.g., Lemma A4 in Wu and Li (2025) for a proof). This then implies that

Plof € Zyuxforalll <k <m]=1—P[pf & Ly nx for somel <k <m]>1—ua,
Therefore, we derive Theorem 5.1. O

S2.9 Proof of Theorem A.1

Proof of Theorem A.1. From Condition A.1, as m — oo,

Var(@) = L2 1 1 5
ar(P) = 2 10 = oy 0 — 0,
j=1 j=1
and
1 QL N T . A
Var EZ{% :WZ{VM(‘/J]'):WZ{(ZU):WZ{U — 0,
j= j= j= j=

where the second last equality uses the fact that the variance of a chi-squared random

variable with degree of freedom 1 is 2. By Chebyshev’s inequality, these then imply that

P =op(1), Ejggb]?:lE EJEIP]Z +OP(1):E]§0'].2+0]P(1)_
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and consequently

b v M e Ullrd MU lt
j= =
These further imply that
— 1
Ty = Y1 —op(1) _ Pms1 +op(1),

SR or(D) \fu o
where the last equality holds under Condition A.1. Let e = lp’”*—l ~ N(0,1). Note that

Pmt1 _ Omp1€+o Om+1€
—1ym 2 —1ym 2 —1ym -1 2'
\/m Z]:1c7] \/m 2]210'] \/m Z] 10’ \/m

Using Wang and Li (Lemma A27 2022), we can then derive that, as m — oo,

sup |P[T,, <c]—P
ceER

fm=1y"m g2
m 2]21(7]

Therefore, Theorem A.1 holds.

S3 Supplemental results for Section 6

S$3.1 Supplemental results for Section 6.1

This section reports additional results from simulations on the first simulation design
with k = 1 and k = 2 at various significance levels.

S3.1.1 Results fork =1

This subsection reports the simulation results for k = 1 that are not contained in the main
paper. Figures S1 and S2 report the results at the 1% and 10% levels respectively for DGP
1. Figures S3 and 54 report the results at the 1% and 10% levels respectively for DGP 2.
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Figure S1: Probability of rejection against heterogeneity parameter p for various cluster

size m and alternatives 6 at « = 0.01 for DGP 1 of simulation design 1 with k = 1.
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Figure S2: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.1 for DGP 1 of simulation design 1 with k = 1.
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Figure S3: Probability of rejection against heterogeneity parameter p for various cluster

size m and alternatives 6 at « = 0.01 for DGP 2 of simulation design 1 with k = 1.
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Figure S4: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.1 for DGP 2 of simulation design 1 with k = 1.
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S3.1.2 Results fork =2

This subsection reports the results for k = 2. Figures S5 to S7 report the results at the 1%,
5% and 10% levels respectively for DGP 1. Figures S8 to S10 report the results at the 1%,
5% and 10% levels respectively for DGP 2. The figures show that the t-test continue to

perform favorably in other significance levels.

S$3.2 Supplemental results for Section 6.2

Figures S11 to S13 report the results for DGPs 3 to 5 for various m and p at a« = 0.05.

S4 Supplemental tables: critical values for k = 2

Table S1 reports the critical values for different numbers of clusters m and heterogeneity
parameters p for « = 0.01 and &« = 0.05 when k = 2.
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Figure S5: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.01 for DGP 1 of simulation design 1 with k = 2.

108



=Q

(e215) 0

=Q

(Jamod) T

=Q

(uamod) ¢

=Q

(uamod) ¢

Method Hagemann t—test

Figure S6: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at & = 0.05 for DGP 1 of simulation design 1 with k = 2.
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Figure S7: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.1 for DGP 1 of simulation design 1 with k = 2.
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Figure S8: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.01 for DGP 2 of simulation design 1 with k = 2.
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Figure S9: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at & = 0.05 for DGP 2 of simulation design 1 with k = 2.
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Figure 510: Probability of rejection against heterogeneity parameter p for various cluster
size m and alternatives 6 at « = 0.1 for DGP 2 of simulation design 1 with k = 2.
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Figure S12: Simulation results for DGP 4 of simulation design 2 at « = 0.05.
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Figure S13: Simulation results for DGP 5 of simulation design 2 at « = 0.05.
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Table S1: Critical values for different values of a, m and p for k = 2.

a =0.01 x = 0.05
p\m 5 10 15 20 25 50 5 10 15 20 25 50
02 2260 1224 0984 0.869 0.800 0.661 1365 0.860 0.711 0.636 0.590 0.496
04 2820 1.722 1460 1.341 1.274 1.148 1.729 1200 1.051 0981 0940 0.861
06 3.652 2328 2017 1.882 1.807 1.669 2264 1616 1450 1375 1332 1.251
0.8 4668 2977 2604 2445 2358 2200 2.849 2.061 1.870 1786 1.738 1.649
1.0 5724 3.644 3204 3.019 2918 2736 3459 2521 2301 2205 2151 2.051
12 6794 4323 3811 3598 3482 3273 4.082 2988 2737 2627 2566 2454
14 7874 5.007 4423 4180 4.049 3812 4713 3460 3.176 3.052 2984 2.858
1.6 8960 5.69 5037 4765 4.617 4351 5350 3935 3616 3479 3403 3.262
1.8 10.049 6.387 5.653 5350 5.186 4.892 5990 4411 4.058 3906 3.822 3.667
20 11.142 7.080 6.270 5936 5756 5432 6.633 4.889 4.501 4334 4.242 4.072
22 12236 7775 6.888 6.524 6326 5973 7.278 5368 4.945 4763 4.662 4.477
24 13332 8470 7507 7111 6.897 6513 7924 5.848 5389 5192 5.083 4.883
26 14429 9.166 8126 7.699 7.468 7.0564 8572 6329 5834 5621 5504 5.288
28 15527 9.864 8746 8.288 8.039 759 9220 6.810 6.279 6.051 5925 5.694
3.0 16.626 10.561 9.366 8.876 8.611 8.137 9.869 7.291 6.724 6481 6346 6.100
32 17.726 11.259 9987 9.465 9.183 8.678 10519 7.773 7.169 6911 6.767 6.505
34 18.826 11.957 10.607 10.054 9.754 9.220 11.169 8.254 7.614 7340 7.189 6911
3.6 19.926 12.656 11.228 10.643 10.326 9.761 11.819 8.736 8.060 7.771 7.610 7.317
3.8 21.027 13.355 11.849 11.232 10.898 10.302 12.470 9.219 8.506 8.201 8.032 7.723
4.0 22128 14.054 12470 11.821 11.471 10.844 13.121 9.701 8952 8.631 8.454 8.129
4.2 23229 14753 13.092 12.411 12.043 11.386 13.772 10.184 9.398 9.061 8.875 8.535
44 24331 15452 13.713 13.000 12.615 11.927 14.424 10.666 9.844 9.492 9.297 8941
4.6 25432 16.152 14.334 13.590 13.187 12.469 15.075 11.149 10.290 9.922 9.719 9.347
48 26534 16.851 14.956 14.180 13.760 13.010 15.727 11.632 10.736 10.353 10.141 9.753
50 27.636 17.551 15.578 14.769 14.332 13.552 16.379 12.115 11.182 10.783 10.562 10.159
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