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Abstract

Empirical researchers commonly observe multiple outcomes intended to measure

an underlying abstract variable. For example, the abstract variable “crime” can be

measured using crime rates for different types of offenses, and “wealth” can be mea-

sured using different asset ownerships. How should one aggregate these multiple

outcomes into a single quantity? In this paper, I show the shortcomings of common

approaches and propose a new approach to aggregate outcomes. First, I document

that three methods are commonly used in the empirical literature: principal com-

ponent analysis (PCA), inverse-variance matrix (IVM) weighting, and standardized

averaging (SA). I show that PCA has several unattractive properties: it is sensitive to

arbitrary choices of normalization, it can lead to non-standard limiting distributions,

it can produce negative weights on some outcomes, and it does not even necessar-

ily maximize precision. IVM does not suffer from the first two problems, but also

has the negative weighting problem. SA is more attractive, but need not maximize

precision. I use statistical decision theory to develop an approach to aggregating out-

comes that minimizes mean-squared error while ensuring interpretable weights. The

framework allows the researcher to flexibly incorporate prior information about the

relative quality of different outcomes. It also allows for valid inference that takes the

prior information into account. I apply the decision-theoretic procedure to two recent

empirical applications.
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1 Introduction

Researchers commonly observe multiple related outcomes that measure an underlying
abstract variable in order to evaluate the effect of a treatment. For instance, Bruhn et al.
(2018) measures entrepreneurial confidence and goal setting based on entrepreneurs’
responses to questions on attitudes and beliefs. Jones et al. (2019) measures productiv-
ity using different employment and workplace-related outcomes. Bau (2022) measures
wealth using various asset ownerships. Bhatt et al. (2023) measures crime involvement
using different types of offenses and arrests. In order to learn the treatment effect on the
abstract variable, to summarize the effect on the outcomes, or to improve interpretability,
researchers often aggregate the related outcomes into one index.

Some commonly used approaches to aggregate outcomes are principal component
analysis (PCA) which was popularized by Filmer and Pritchett (2001), the equally-
weighted standardized averaging (SA) approach by Kling et al. (2007), and the inverse-
variance matrix (IVM) weighting approach by Anderson (2008). To show the popularity
of these methods, Table 1 counts the number of articles from “top-five” economics jour-
nals that applied these methods in the last five years.

In this paper, I analyze the properties and shortcomings of these approaches and pro-
pose a new method to aggregate outcomes optimally. In the first part of the paper, I
show how using PCA, SA, and IVM affects precision and interpretability. Precision is
measured by the asymptotic variance of the treatment effect on the aggregated outcome.
Interpretability requires the weights on the outcomes to be nonnegative and sum to one.
This is because negative weights can cause sign reversal in the aggregated treatment ef-
fect. The negative weights issue here is similar to but different from the negative weights
issue in subpopulations, such as in difference-in-differences (e.g., de Chaisemartin and
D’HaultfŒuille (2017); Goodman-Bacon (2021); Sun and Abraham (2021); Borusyak et al.
(2024)) and local average treatment effects (e.g., Blandhol et al. (2025); Słoczyński (2024)).

I show that PCA-aggregated treatment effects do not maximize precision, can be dif-
ficult to interpret due to negative weights, is sensitive to an arbitrary sign normalization,
and can potentially lead to a nonstandard asymptotic distribution. This is in contrast
with how PCA is sometimes motivated as a way to increase power or improve inter-
pretability. IVM can also have negative weights and does not always maximize precision.
SA puts equal and positive weights on the outcomes, so it is not subject to interpretation
concerns for negative weights. However, SA does not utilize the correlation structure.

In the second part of the paper, I develop a new approach to aggregate treatment
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effects using statistical decision theory. The approach takes precision into account using
the mean-squared error of the aggregated treatment effect as the objective, and enforces
nonnegative weights to avoid interpretation issues. Since the abstract variable of interest
is unobserved, I allow for two optimality criteria. The first one is the minimax criterion,
which minimizes the worst-case risk. The other is the recently proposed adaptive regret
concept (Armstrong et al., 2024) that measures the ratio of the cost of deviating from
the optimal weight. The second approach has an advantage that it does not require
specifying the level of misspecification as in the minimax criterion. In either case, I show
that the weights can be computed using convex optimization.

My statistical decision framework can allow for various economic specifications. It
can incorporate shape restrictions, such as some treatment effects being more impor-
tant than others. I show that the decision-theoretic framework can be motivated via a
communication model, where the reader has subjective weights on the treatment effects.

I illustrate the tools proposed in this paper by considering two empirical examples.
First, I revisit an analysis in Campante and Do (2014) that study how isolated cities
affect public good provision. The authors created a public good provision index using
PCA. They found that state isolation has a negative effect on the PCA index. However,
one of the outcomes in the PCA index has a negative weight. I apply my decision-
theoretic approach and find that a negative effect can still be found after making one of
the outcomes less important via shape restrictions. However, the effect is not significant
at the original 10% level being used. Next, I revisit Bruhn et al. (2018) that studies the
impact of management consulting on small and medium enterprises. To study how the
consulting program affects entrepreneurs’ goal setting and confidence, they use PCA
and SA to create entrepreneurial spirit indices. I revisit their analysis using my decision-
theoretic approach on the part where they found a significant effect on the PCA index
at the 10% level but not on the SA index. I find the consulting program has a positive
effect on entrepreneurial spirit, but it is not significant.

1.1 Survey on the use of PCA, SA, and IVM

Table 1 documents the practice of using PCA, SA, and IVM to aggregate outcomes. The
table shows they are prominent in applied work. I restricted the search to the “top-five”
economics journals between 2020 and 2024. The counts for PCA are based on searching
the papers that contain the phrase “principal component” on Google Scholar and journal
websites. The counts for SA and IVM are based on searching articles that cited Kling
et al. (2007) and Anderson (2008), respectively, on Google Scholar. The counts in Table 1
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Table 1: Usage of PCA, SA, and IVM in “top-five” economics journals in 2020–2024.

Journal \ Count PCA SA IVM

American Economic Review 10 13 14
Econometrica 4 2 2
Journal of Political Economy 4 6 0
Quarterly Journal of Economics 7 7 5
Review of Economic Studies 5 5 2

Total 30 33 23

Notes: PCA refers to principal component analysis, SA refers to equally-weighted standardized
averaging (Kling et al., 2007), and IVM refers to inverse-variance matrix weighting (Anderson,
2008). The above table focuses on using PCA, SA, and IVM to aggregate outcomes.

only include the articles that use these methods to aggregate outcomes.

1.2 Related literature

This paper is related to two different strands of literature in econometrics.

First, my paper is related to the literature that studies how to aggregate outcomes.
O’Brien (1984) is an early work in biostatistics that studied the use of generalized least
squares (GLS) to aggregate outcomes. Recently, Anderson and Magruder (2023) studied
the power of SA under the assumption that treatment effects are homogeneous. Gómez
(2024) conducted a simulation study on the power properties for PCA, SA, and IVM,
but did not discuss negative weights or derive theoretical properties on precision for
all three methods. Allee et al. (2022) reviewed the use of PCA and factor analysis in
accounting research. Similar to my survey on economic papers in Table 1, they found
that 219 articles used PCA or factor analysis in ten major accounting journals from 2015
to 2019. They did not discuss asymptotic variance, power, the problem of negative
weights, sensitivity to normalization, and nonstandard asymptotic distribution for PCA
and factor analysis. They also did not discuss SA and IVM in their review.

Apart from PCA, SA, and IVM, other approaches have been recently proposed to ag-
gregate outcomes, but they involve a different objective, or require additional assump-
tions or data, such as Anderson and Magruder (2023), Hu et al. (2024), Fu and Green
(2025), and Stoetzer et al. (2025). I review them in Section 3.4.2 ahead after introducing
the problem formally.

Second, this paper is related to the literature on statistical decision theory and optimal
estimation by Donoho et al. (1990), Donoho (1994), Cai and Low (2004), Armstrong and
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Kolesár (2018, 2021a,b), and others. The idea of using adaptive regret to adapt over a
range of misspecification was recently proposed by Armstrong et al. (2024), which is
related to Bickel (1984) that adapts over granular sets. While I use the adaptive concept
in Armstrong et al. (2024), my setting is different in that I allow all estimators to be
biased, whereas they assume there is one unbiased estimator. I also restrict attention to
a convex combination of the estimators to ensure interpretability on the treatment effect
of the aggregated outcome. My paper is also related to the use of statistical decision
theory in site selection and evidence aggregation problems, such as the recent work by
Gechter et al. (2024), Ishihara and Kitagawa (2024), and Montiel Olea et al. (2025). These
papers have a different goal from reporting an aggregated treatment effect. See also
Wald (1950), Savage (1951), and Manski (2004) for statistical decision theory.

In concurrent and independent work, Fedchenko (2025) studies treatment effect esti-
mation with summary indices. Similar to my paper, Fedchenko (2025) points out that
negative weights can cause interpretation issues, shows how to conduct valid inference
due to the data-dependent weights, and points out that the claims on power improve-
ment do not necessarily hold. Despite the above similarities, there are several notable
differences between our work. First, I develop a new statistical decision approach to
aggregate, while Fedchenko (2025) recommends using SA or simple averaging. Second,
I consider the treatment effect on the latent outcome as the target parameter in addition
to the treatment effect on the summary index, whereas Fedchenko (2025) considers the
latter parameter. Third, Fedchenko (2025) mainly focuses on SA and IVM. I also study
PCA due to its popularity as documented in Table 1. Fourth, Fedchenko (2025) only
points out the negative weights problem for PCA, while I show that there are three other
issues with the PCA approach.

1.3 Organization of the paper

Section 2 introduces the setup and describes criteria for aggregating treatment effects.
Section 3 studies commonly used methods and their shortcomings. Section 4 presents
the decision-theoretic approach. Sections 5 presents two empirical applications. Section
6 concludes. All proofs can be found in the appendix.

2 Framework

This section introduces the setup and discusses some natural criteria for aggregation.
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2.1 Notations

Consider a researcher who observes multiple outcomes Yi ≡ (Yi,1, . . . , Yi,q)
′ ∈ Rq to

measure the effect of a treatment Di ∈ R, where i = 1, . . . , n indexes observation. Let
β ≡ (β1, . . . , βq)′ ∈ Rq be the vector of treatment effects on these outcomes (possibly
using additional covariates). Researchers are often interested in learning the treatment
effect on a latent outcome of interest Li ∈ R, in addition to (or instead of) the treatment
effect on each of the outcomes. Let θ ∈ R be the treatment effect of Di on Li. For
exposition purposes, I will frequently refer to the running example below on aggregating
multiple asset/wealth-related outcomes, which is a common setting in empirical work
(such as Blattman et al. (2020), Banerjee et al. (2021), Bau (2022), and many others).

Example 2.1 (Running example). A researcher is interested in learning the effect of a cash
transfer program on wealth. The researcher collects multiple asset-related outcomes Yi,
such as the ownership of goats, cows, cars, televisions, and cooling devices. Let Li be
wealth and Di ∈ {0, 1} be the indicator that equals 1 if treatment is received, and equals
0 otherwise. Here, θ is the treatment effect of Di on Li. △

Section 2.2 shows additional empirical applications to facilitate the interpretation of θ.

The outcomes are required to be oriented in the same direction and standardized in
a way that the researcher wants to interpret the effect (e.g., using the full sample, or the
control sample). In terms of the running example, the orientation requirement is satisfied
when each Yi,j is increasing in the number or ownership of assets. This assumption is
summarized below and is maintained throughout the paper.

Assumption 2.2. The outcomes Yi have been oriented so that a higher value means a better
outcome, and they have been suitably normalized.

For a given weight w ≡ (w1, . . . , wq) ∈ Rq, the treatment effect estimator of Di on
w′Yi is the same as linear aggregating the treatment effects of Di on each outcome Yi,j

using w. Lemma A.2 in the appendix formally describes this equivalence for linear
models with covariates and potentially data-dependent weights. Hence, I focus on the
following representation of weighted average of treatment effects to estimate θ:

τ̂ ≡ w′β̂ = w1β̂1 + · · ·+ wq β̂q, (1)

for an estimator β̂ ≡ (β̂1, . . . , β̂q)′ of β. Without additional assumptions, τ ≡ E[τ̂] may
not be equal to θ. In terms of running example (Example 2.1), this means the treatment
effect of the cash transfer program on the aggregated asset w′Yi may not be exactly
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equal to θ (i.e., the treatment effect on wealth). Thus, I use τ to distinguish it from θ. As
discussed in Section 3, many approaches (including PCA, SA, and IVM) have the above
representation.

The above setup assumes that the treatment effects are related to the same θ for
exposition purposes. This is not necessary when one believes there is one latent outcome
for each domain. Researchers can create a summary index for each domain of outcomes
(e.g., as suggested in Anderson (2008)). In terms of the running example on wealth
above, researchers could create indices on livestock and durable assets separately.

2.2 Additional empirical examples

I discuss additional empirical examples below apart from the running example of wealth
to explain the setup.

Example 2.3 (Public good provision). Campante and Do (2014) study the impact of iso-
lated capital cities on corruption, accountability, and public good provision.

In this example, let θ be the effect of state isolation on public good provision. They
observe three outcome variables related to public good provision Yi, namely, smart state
index, the percentage with health insurance, and the log number of hospital beds. β̂

is the regression estimator of how isolation affects each of the three outcomes. They
aggregate the three variables using PCA to create a public goods provision index, so w

is the corresponding PCA weights. △

Example 2.4 (Entrepreneurial spirit index). Bruhn et al. (2018) study the impact of of-
fering management consulting services to small and medium enterprises in Mexico.
They study how consulting affects productivity, returns on assets, and “entrepreneurial
spirit.” Entrepreneurial spirit measures the confidence of entrepreneurs and goal setting.

Let θ be the impact of consulting on entrepreneurial spirit. They create an en-
trepreneurial spirit index using the response to eight outcomes Yi. Each outcome is
the entrepreneur’s response (coded as 1 to 5) to a survey question, such as “I have pro-
fessional goals.” Thus, β̂ is the treatment effect of consulting on the responses. They
create an index by PCA and SA, so w is the corresponding PCA or SA weights. △

Example 2.5 (Violence involvement). Bhatt et al. (2023) study the impact of community
programs on serious violence involvement θ. To measure crime involvement, they use
related outcomes Yi, i.e., shooting and homicide victimizations, arrests, and other se-
rious violent-crime arrests. β̂ is the treatment effect of each outcome. They create a
standardized index that averages the three outcomes. They also create an index using
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social costs and PCA. Hence, w depends on the approach used. △

2.3 Criteria for choosing the weights

Even if one focuses on using a linear combination in (1), there are many choices for the
weights. In this subsection, I discuss two criteria for choosing the weights w ∈ Rq.

2.3.1 Interpretability

The interpretability criterion requires the weights to be nonnegative and sum to one.
Negative weights can cause the overall effect to be negative even though the treatment
effect on each outcome is positive. For example, in the running example on wealth
(Example 2.1), suppose the cash transfer program has a positive treatment effect on each
asset. With negative weights, it is possible that the treatment effect on the aggregated
outcome is negative, which is undesirable. In addition, negative weights can also cause
reverse ordering of the aggregated outcome. For instance, suppose the weight on cows
is negative in the running example. This means holding other assets fixed, an individual
with more cows has worse wealth. Hence, the above shows that having negative weights
in the aggregated outcome is an unattractive property.

The sign reversal issue described above is related to, but different from, the nega-
tive weights issues pointed out in the recent econometrics literature, such as Blandhol
et al. (2025) and Słoczyński (2024) on instrumental variables and de Chaisemartin and
D’HaultfŒuille (2017); Goodman-Bacon (2021), Sun and Abraham (2021), Borusyak et al.
(2024) on difference-in-differences. In the aforementioned papers, they are concerned
with the negative weights from the treatment effect of the subpopulations. In the con-
text of aggregating outcomes, the negative weights are coming from the treatment effect
of different outcomes on the same population. Regarding the issue of reversed ordering
of the aggregated outcome, Vyas and Kumaranayake (2006) and Kolenikov and Angeles
(2009) pointed out that PCA socio-economic status indices can have this problem as some
variables can receive negative weights. Anderson and Magruder (2023) also mentions
that GLS-weighted indices can have negative weights.

Based on the above reasons, it is reasonable to focus on the class of convex weights
that are nonnegative and sum to one:

Wcvx ≡ {w ∈ Rq : w′1q = 1,w ≥ 0q}, (2)

where 1q is a vector of q ones and 0q is a vector of q zeros. Requiring the weights to
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sum to one has two purposes. First, this restricts the scale of the weights to avoid having
infinitely large weights. Second, this nests the homogeneous treatment effects case, i.e.,
if β̂ j = β for any j = 1, . . . , q, then τ̂ = β for any w ∈ Wcvx.

Remark 2.6. After computing the weights, researchers may “post-process” the aggre-
gated outcome w′Yi by standardizing it (e.g., Parker and Vogl (2023)) or rescaling it to
[0, 1] (e.g., Ajzenman (2021)). I discuss the implications of this post-processing step in
Appendix Section A.3.1. ■

2.3.2 Precision

A natural criterion for τ̂ to be precise is to choose the weights to minimize the mean-
squared error (MSE). This amounts to using the squared loss function (τ̂ − θ)2. The MSE
can be written as a function of w as follows:

MSE(w; θ) ≡ E[(τ̂ − θ)2] = Var[τ̂] + E[τ̂ − θ]2. (3)

The MSE criterion evaluates the quality of the estimator by the variance and bias. In
terms of the running example, the bias component measures how well the treatment
effect on the weighted average of assets captures the treatment effect on wealth. The
variance component evaluates the noisiness of the aggregated treatment effect. This
criterion nests the special case where the treatment effect on each asset β j equals the
treatment effect on wealth θ, i.e., β j = θ for each j = 1, . . . , q. In this special case, the
MSE becomes the variance. My decision-theoretic approach to be introduced in Section
4 shows how to handle the bias formally without making this assumption.

3 Common aggregating methods and their shortcomings

In this section, I study common methods for aggregating outcomes and show their short-
comings. Each method is mainly evaluated using the precision and interpretation criteria
described in Section 2.3. I also evaluate precision in terms of the asymptotic variance of
τ̂n. I show that there are additional issues for PCA.

3.1 Principal component analysis (PCA)

PCA is a dimension-reduction tool that was developed more than a century ago (Pear-
son, 1901; Hotelling, 1933). PCA transforms a set of correlated variables into a new set of
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uncorrelated variables called principal components. Refer to Table 1 for the popularity
of using PCA to aggregate treatment effects.

PCA is often performed on the correlation matrix of the outcomes, denoted as ΣY.
Using a correlation matrix is preferred to a covariance matrix because the outcomes have
different units, so PCA on the covariance matrix is not scale invariant (Jolliffe, 2002). In
this subsection, I maintain Assumption 2.2 such that Yi represents the standardized
outcomes and β is the treatment effect on such standardized outcomes.

The PCA approach aggregates outcomes using the first principal component (PC1) of
ΣY, i.e., it finds the vector w ≡ (w1, . . . , wq) ∈ Rq that maximizes the variance of the
linear combination of the outcomes Var[w′Yi] = w′ΣYw. For textbook expositions on
PCA, see, for instance, Jolliffe (2002) and Jackson (2005).

Section 3.1.1 reviews the relevant theory of PCA. Sections 3.1.2 and 3.1.3 evaluate PCA
using the interpretation and precision criteria, respectively. Section 3.1.4 explains that
PCA-aggregated treatment effects suffer from an arbitrary sign normalization. Section
3.1.5 shows that the PCA-aggregated treatment effect can potentially have a nonstandard
asymptotic distribution.

3.1.1 The PCA problem

The problem of finding the PC1 of ΣY can be written as

wpca = arg max
w∈Wunit

w′ΣYw, (4)

where the class of weights is

Wunit ≡ {w ∈ Rq : w′w = 1, c′w ≥ 0}, (5)

for a given c ∈ Rq. I explain the above choices and the role of c in (5) below.

First, the PC1 of ΣY is the leading eigenvector of ΣY. The PC1 of ΣY is unique when the
largest eigenvalue is unique. To formalize this, let {(νj, λj)}

q
j=1 be the eigenpairs of ΣY,

where {λj}
q
j=1 are the eigenvalues of the matrix ΣY and νj is a unit-length eigenvector

corresponding to λj for each j = 1, . . . , q. I assume the eigenvalues are ordered as
λ1 ≥ · · · ≥ λq. The assumption below ensures the leading eigenvector of ΣY is unique.
The problem of having repeated eigenvalues is briefly discussed in Remark 3.7.

Assumption 3.1 (Unique leading eigenvector for ΣY). λ1 > λ2.
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Figure 1: Sign normalization for the PCA problem.

w1

w2

Notes: The green ellipse represents the objective of the PCA problem. The blue unit-length circle
represents the unit-length constraint. Both the grey and red dots are on the largest ellipse that
contains the unit-length circle. The red dot is identified by the w1 + w2 ≥ 0 constraint.

Second, normalization on the length of w is required because the variance Var[w′Yi]

is unbounded without any restrictions on w. The unit-length restriction

w′w = w2
1 + · · ·+ w2

q = 1 (6)

in (5) is commonly used. Other length normalizations are possible, although the results
would change based on the choice of normalization and they could lead to a more
difficult optimization problem (see, for instance, Jolliffe (2002)).

Third, the inequality c′w ≥ 0 in (5) is an identification condition used to obtain a
unique solution. This identification condition is needed because the leading eigenvector
is unique up to a sign change even though (6) is imposed (i.e., both ν1 and −ν1 are
leading eigenvectors of ΣY). Figure 1 explains this via the geometry of the PCA problem,
where the PC1 problem finds the largest ellipse (i.e., the objective w′ΣYw in (4)) subject
to the unit circle (i.e., the unit-length constraint (6)). The unit circle alone is not sufficient
to pin down a unique solution because both the grey and red dots are valid solutions.
The inequality constraint w1 +w2 ≥ 0 can be used to rule out the grey point and leads to
a unique solution. However, the choice of the identification constraint is arbitrary. Table
2 shows how several common programming languages implement the additional sign
constraints to identify the unique solution to the PCA problem.

Based on Table 2, the constraint c′w > 0 covers the Stata implementation by setting c

as a vector of ones (note that Stata imposes a strict inequality based on the manual). This

12



Table 2: Sign constraints for PCA in common implementations.

Programming language Sign constraints

Stata The pca command chooses the sign of the loadings
such that the sum of each principal component is
positive (StataCorp, 2025).

Matlab The pca command chooses the sign of the loadings
such that the largest component of each principal
component is positive (The MathWorks Inc., 2025).

R The princomp command sets the signs of the loadings
such that the first entry of each principal component
is nonnegative as the default (R Core Team, 2025).

also covers the R implementation by setting c as a vector where the first entry equals 1
and the remaining entries are 0. This normalization means the ordering of the variables
matters. The normalization used by Matlab cannot be written as one linear constraint,
but can be analyzed similarly.

I conclude this subsection with the following remarks.

Remark 3.2. It can be shown that the PCA problem in (4) using an estimator for ΣY is
equivalent to the following problem that finds the best-fitted hyperplane to the vector of
outcomes

min
F∈Rn,w∈Rq

1
n

n

∑
i=1

(Yi −wFi)
′(Yi −wFi),

s.t. w′w = 1,

where F ≡ (F1, . . . , Fn) ∈ Rn. See, for instance, Bai and Ng (2002, Section 3) or James
et al. (2021, Section 12.2.2), for related discussions. The length normalization constraint
above is chosen to be the same as (6). ■

Remark 3.3. The PCA problem in (4) can be written as

min
w∈Wunit

w′Σ−1
Y w

when ΣY is positive definite. Thus, the PCA problem can be viewed as finding the
smallest eigenvector of the precision matrix Σ−1

Y . ■
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3.1.2 Interpretation

The class of weights (5) used by PCA does not restrict the weights to be positive. Whether
the weights can be all positive depends on the correlation. It is known that if ΣY has
only positive elements, then all the terms in the leading eigenvector of ΣY have the same
sign using the Perron-Frobenius theorem (see, for instance, Exercise 8.7.1 of Mardia et al.
(1979)). Hence, unless ΣY has only positive entries, it is possible for the PC1 of ΣY to
have different signs. Outcomes can be negatively correlated with each other even if they
are all positively affected by the treatment. In the following, I discuss two possibilities
where negative correlations can occur.

The first possibility where this may occur is when the set of outcomes includes goods
that are substitutes. In terms of the running example on wealth, some outcomes that
are substitutes for each other might be included in the wealth index. For instance, the
asset index created by Bau (2022) contains assets that are likely to be substitutes (air
conditioner, air cooler, and fan). In the data, air conditioners are negatively correlated to
air coolers and fans. The PCA asset index gave negative weights to air coolers and fans
(see Figure A.3 in the appendix for the weights). To understand how negative correlation
arises with substitutes, I consider a stylized two-good example below.

Example 3.4 (Negative weights in PCA index due to substitutes). This example consid-
ers a consumer optimization problem with two goods, where the consumer’s utility is
increasing in both goods. Suppose the researcher creates a summary index by PCA us-
ing the two goods. I show that negative weights arise in this example due to a negative
correlation between the two outcomes.

Consider the problem below where the goods are substitutes (e.g., cows and goats):

(Y⋆
i,1, Y⋆

i,2) = arg max
y1,y2

yAi
1 y1−Ai

2 ,

s.t. y1 + p2y2 ≤ Incomei(Di),
(7)

where the price of good 1 is 1, p2 is the price of good 2, Incomei(Di) ≥ 0 is the income
of individual i depending on Di ∈ {0, 1}, and Ai ∈ (0, 1) is a random utility parameter.

The optimal solution to problem (7) is Y⋆
i,1 = AiIncomei(Di) and Y⋆

i,2 = (1−Ai)Incomei(Di)
p2

.
I consider the general scenario in Appendix A.1.1. For concreteness, suppose p2 = 2,
Ai equals 0.2 or 0.8 with equal probabilities, Di equals 0 or 1 with equal probabilities,
Incomei(Di) = 10 + 5Di + Vi, where Vi ∼ Uniform[0, 5] and (Vi, Di, Ai) are mutually
independent. Then, Corr[Y⋆

i,1, Y⋆
i,2] ≈ −0.82 < 0.
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The negative correlation in the two outcomes is related to the two goods being sub-
stitutes for each other. As a result, running PCA on these two goods would lead to an
index with negative weights. However, Di has a positive effect on both outcomes. Hence,
using PCA to create an index to represent utility here is unreasonable.

In Appendix A.1.2, I further analyze a case with perfect substitutes. △

Another possibility for negative correlation to arise is when one discretizes a con-
tinuous variable into mutually exclusive binary indicators (see Kolenikov and Angeles
(2009) for more discussion). To see this in terms of the running example of wealth in-
dex in Example 2.1, let Yi be a categorical variable with support {y0, y1, . . . , yL} that
indicates the type of cooling device owned by a household. If the following binary indi-
cators are created to represent ownership of the types of cooling device Zi,l = 1[Yi = yl]

for l = 1, . . . , L, then Cov[Zi,l, Zi,k] = −E[Zi,l]E[Zi,k] ≤ 0 for l ̸= k.

Finally, the class of weights Wunit in (5) requires the weights to be of unit length. In
addition to the possibility for PCA to have negative weights, the weights do not typically
sum to one. Hence, even if β j = β for all j = 1, . . . , q, w′β can be different from β.

3.1.3 Precision

This subsection studies how using PCA to aggregate outcomes affects the precision of the
aggregated treatment effect. It is often mentioned that PCA is used because it maximizes
the variance of the linear combination of the outcomes, or it is a tool for dimension
reduction. While these statements follow from the definition of PCA, I show that these
properties do not necessarily translate to a precise aggregated treatment effect.

Using PC1 to weight the outcomes does not necessarily minimize the asymptotic vari-
ance of the aggregated treatment effect estimator. This is because PCA is a maximization
problem involving ΣY and not directly related to the minimization of variance of the ag-
gregated treatment effect. I show the details in the appendix. To illustrate this, I consider
an example with binary treatment below.

The analysis below studies how running PCA on the correlation matrix of the out-
comes does not lead to an aggregated treatment effect with low variance. Thus, the
analysis below assumes the variance matrices are known. In practice, such matrices
have to be estimated, and the weights are computed by running PCA on such estimated
matrices. Computing the correct standard errors of the aggregated treatment effect re-
quires taking these estimated weights into account (details are in Appendix A.7).

Example 3.5. Suppose the researcher observes q asset outcomes to evaluate the effect of
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a cash transfer program Di ∈ {0, 1} as in Example 2.1. Let Yi be the vector of suitably
standardized outcomes (as maintained in Assumption 2.2) such that

Yi,j = ξ j + β jDi + Ui,j, (8)

where ξ j, β, Ui,j ∈ R. Let β̂n ≡ (β̂n,1, . . . , β̂n,q)′ be the estimator for β. Let the treatment
effect on the wealth index be τ̂n ≡ w′β̂n = ∑

q
j=1 wj β̂n,j for a fixed w ∈ Rq. Under

standard assumptions, the asymptotic variance of τ̂n is given by

σ2
τ(w) ≡ w′Σβ̂w, (9)

where Σβ̂ is the asymptotic variance of β̂n. Note that computing Σβ̂ has to take into
account that each outcome is standardized by the sample standard deviation. The ex-
pression of Σβ̂ is shown in (A.22) in the appendix. Requiring the PC1 of ΣY to minimize
σ2

τ(w) means the smallest eigenvector of Σβ̂ has to be equal to the leading eigenvector of
ΣY. This is generally a strong condition. For exposition purposes, I present a simplified
analysis below and defer the details to Appendix A.4.

Assume homoskedastic errors, Var[Yi,j] = 1 and β j = 0 for j = 1, . . . , q. Then,

Σβ̂ =
1

pD(1 − pD)
ΣY, (10)

where pD ≡ P[Di = 1]. Here, the PCA problem that maximizes w′ΣYw is the same as
maximizing the asymptotic variance of the aggregated treatment effect w′Σβ̂w.

For concreteness, Figure 2 shows a numerical example using the above model with
q = 2, β1 = β2 = 0, pD = 0.1, and Cov[Yi,1, Yi,2] = −0.6. The figure plots the asymptotic

standard deviation of τ̂n, i.e., στ(w) in (9), against w1 (where w2 =
√

1 − w2
1 is required

to be nonnegative). Since Var[Yi,1, Yi,2] < 0, a leading eigenvector of ΣY is (− 1√
2
, 1√

2
).

But this vector maximizes στ(w). △

Next, consider the MSE criterion in (3). PCA does not minimize this in general as
well following a similar argument as in Example 3.5. In addition, even if the variance is
known, it does not provide information about θ.

Apart from variance, PCA also requires strong conditions to maximize the t-statistic.
This is in contrast with how PCA is sometimes motivated as a way to improve power.
The analysis on t-statistic requires additional notations, so I summarize the main idea
here and show the details in Appendix A.5. In terms of the setting in Example 3.5, the
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Figure 2: A two-outcome numerical example that evaluates the precision of PCA.
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Notes: The above plots the asymptotic standard deviation of the aggregated treatment effect
against w1. See Example 3.5 for the data-generating process. The vertical dashed line represents
the choice made by PCA.

t-statistic squared has a one-to-one relationship with R-squared. Thus, to maximize R-
squared, the weights should be chosen to “separate” the means of w′Yi for the treated
and control groups as much as possible. This means w′β is also important, but PCA
on ΣY does not achieve this goal without additional conditions because ΣY pools the
information from treated and control groups together. I also discuss the more general
cases in the appendix.

3.1.4 Sensitivity to the sign (identification) constraint

The uniqueness of the solution to (4) is related to the inequality constraint c′w ≥ 0
in (5) to rule out one solution. However, there is no unique method of imposing the
identification constraint as reviewed in Table 2. This causes the results to be sensitive
to the identification condition. In particular, changing the identification condition can
potentially lead to an aggregated treatment effect to be of different sign. I illustrate this
via the following empirical example.

Example 2.3 (revisited). This example revisits one of the analyses in Campante and Do
(2014) that generates a public good provision index using PCA on three outcomes. It
shows that the treatment effect on the PCA index is sensitive to the sign constraint.

This example replicates the OLS analysis in R to generate a PCA index and then re-
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Figure 3: The PCA-aggregated treatment effects replicated using R.
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Notes: The x-axis shows which variable is the first variable passed to the function princomp in R.
The points show the PCA-aggregated treatment effect. The blue bars show the 90% confidence
interval that uses the robust option as in the original Stata replication code. The red horizontal
line shows the PCA-aggregated treatment effect obtained from Stata.

gresses it on average distance from the state capital and other controls. As reviewed in
Table 2, the princomp function depends on what the “first variable” is. Figure 3 uses dif-
ferent outcomes as the “first variable” and shows the coefficient on the average distance
away from the capital using the princomp function in R. It shows that positive or negative
effects are possible when different outcomes are used as the “first variable,” while being
significant at the 10% level. Standard errors are computed as in the authors’ replication
code. See Appendix A.7 on computing standard errors with the generated outcomes.
The red line shows the treatment effect estimated using the authors’ replication code in
Stata. △

When all treatment effects and PCA weights have the same sign, it might be clear
what the “correct” choice of the sign identification constraint is. However, it can create
an ambiguity when the signs of the treatment effects and loadings are mixed.

3.1.5 Nonstandard asymptotic distribution

In this subsection, I show that PCA-aggregated treatment effects can have a nonstandard
asymptotic distribution due to weak identification. This is due to the c′w ≥ 0 constraint
in (5) that is used to achieve identification.
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If c′wpca is “near” 0, this creates a weak identification issue. Intuitively, this is because
it becomes more difficult to pin down the unique solution when compared to the strong
identification case that c′wpca is “far away” from 0. This observation and its implication
on inference is summarized in the proposition below, where I use a drifting sequence to
model the behavior that c′wpca is “near” 0. This is related to the approach used to study
the issue of weak instruments by Staiger and Stock (1997). To analyze the large-sample
properties, Assumption A.1 (stated in the appendix) requires that the estimators for β

and ΣY are consistent and a suitable central limit theorem applies.

Proposition 3.6. Let Assumptions 2.2, 3.1 and A.1 hold. Suppose c′wpca,n = δ√
n for some

δ > 0. Let ŵpca,n be the solution to (4) using a consistent estimator of ΣY, and τpca,n ≡ w′
pca,nβ.

Consider C = [tlb, tub] where −∞ < tlb < tub < ∞. If τpca ̸= 0, then

lim
δ↓0

lim
n→∞

P[
√

n(τ̂pca,n − τpca,n) ∈ C] ≤ 0.5.

The analysis uses matrix/eigenvector perturbation (see, for instance, Stewart and Sun
(1990), for a comprehensive reference) because the PCA problem is not convex (the equal-
ity constraint is not affine), and eigenvectors do not generally have a closed-form unless
in special cases. With strong identification, it is still possible to obtain asymptotic nor-
mality. I show the details for the strong identification case in Appendix A.7.1. I illustrate
the issue with weak identification by a calibrated simulation exercise in Appendix A.8.

Finally, the following remark states that the above is not the only possibility to have
weak identification.

Remark 3.7. Having repeated leading eigenvalues (i.e., relaxing Assumption 3.1) can
lead to a similar identification issue. This is because in this case, the leading eigenvector
is no longer unique. ■

3.2 Inverse variance matrix weighting (IVM)

Anderson (2008) creates a summary index by a weighted average of standardized out-
comes using the inverse of the covariance matrix. Following pages 1485 and 1949 of
Anderson (2008), Assumption 2.2 is imposed such that each outcome is demeaned and
divided by its control group standard deviation.
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The weights are given by

wivm ≡
Σ−1

Y 1q

1′qΣ−1
Y 1q

, (11)

where the covariance matrix ΣY is obtained from the outcomes standardized as described
above. The weight in (11) can be obtained by solving

min
w∈Wsto

w′ΣYw, (12)

where the class of weights requires the entries to sum-to-one (“sto”):

Wsto ≡ {w ∈ Rq : w′1q = 1}. (13)

Anderson (2008, page 1485) discussed that using the covariance matrix in weighting
ensures highly-correlated outcomes receive less weight, and that the resulting weight is
the efficient generalized least squares (GLS) estimator (O’Brien, 1984). The connection
with GLS can be found in the theorem on page 1082 of O’Brien (1984), which states that
if Y is a vector of q unbiased estimator of a scalar parameter with covariance matrix ΣY,
then the corresponding is best linear unbiased estimate is given by w′

ivmY .

3.2.1 Interpretation

The class of weights (13) used by IVM only imposes a length normalization, with the
signs being unrestricted. The denominator of the weights (11) is positive because ΣY

is positive definite. However, the numerator can contain negative entries because it
involves summing rows of the inverse of ΣY. Hence, the weights can be negative.

3.2.2 Precision

The objective in (12) is not necessarily the same as minimizing the asymptotic variance
on the aggregated treatment effect because it focuses on the variance on outcomes. It
also does not equal the MSE in (3) without additional assumptions on θ.

In the following, I revisit the binary treatment example. Similar to Section 3.1.3, the
below analysis assumes the variance matrices are known. In practice, such matrices have
to be estimated and (11) is computed using such estimated matrix. I defer the discussion
of generated outcomes and how to correctly compute standard errors to Appendix A.7.
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Example 3.8. Consider the binary treatment setup as in Example 3.5 with the exception
that each outcome is divided by the standard deviation from the control group as in
Anderson (2008). Thus, the derivation for the asymptotic variance is similar as Example
3.5 with the difference on how the outcomes are standardized.

Minimizing w′ΣYw and w′Σβ̂w over w ∈ Wsto do not necessarily lead to the same
solution. One possibility that they give the same solution is with homoskedasticity,
β = 0q, and each outcome has a variance of 1 in the control group. This is because in
this specification, Σβ̂ is a scalar multiple of ΣY as in (9). However, this may not be true
with heteroskedasticity or more general setup. I show the details in Appendix A.4.

Next, consider the MSE in (3). Even if the variance of β̂n is known, it still requires the
knowledge of θ, so IVM does not minimize MSE without additional assumptions. △

Similar to the PCA analysis, wivm does not necessarily maximize t-statistic or improve
power. The details on the connection between the t-statistic and IVM can be found in
Appendix A.5.

3.3 Equally-weighted standardized averaging (SA)

Kling et al. (2007) creates a summary index by taking an equally-weighted average of
treatment effects after each treatment effect is demeaned by the control group’s mean
and divided by the standard deviation of the corresponding outcome in the control
group. Hence, their weight is

wsa ≡
(

1
q

, . . . ,
1
q

)′
=

1
q
1q.

Since the above weights are positive, there is no interpretation issues from negative
weights as in the two previous methods.

Kling and Liebman (2004) and the appendix of Kling et al. (2007) discussed why they
divide by the control variances. From footnote 13 of Kling and Liebman (2004): this is
for comparison on effect size relative to the control group, which is related to Glass’s
delta (see, for instance, Glass et al. (1981)). They compute the sample variance of the
resulting weighted average of treatment effects via seemingly unrelated regression in
order to account for the correlation in β̂n.
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3.3.1 Precision

Equal weighting minimizes the asymptotic variance of τ̂n if the asymptotic variance of
the vector of treatment effects is an equicorrelation matrix. This is summarized in the
proposition below, where the result follows from a constrained optimization calculation.

Proposition 3.9. Let Σ be an equicorrelation matrix, i.e., Σ has diagonal entries equal 1 and
off-diagonal entries all equal to ρ ∈ (− 1

q−1 , 1). Then, wsa = arg minw∈Wsto
w′Σw.

The length normalization choice that w sums to one in Proposition 3.9 to restrict the
length of w is a natural minimal assumption such that wsa ∈ Wsto in (13). The restriction
on the correlation is to maintain positive definiteness of Σ (see, for instance, Abadir and
Magnus (2005, page 241)).

While the above shows under what conditions equal weighting can be optimal, using
the variance matrix to weight the outcomes can increase precision. I demonstrate this
using a stylized example with duplicated variables in Appendix A.6 as a limiting case
of having highly correlated outcomes.

Similar to the previous analysis, wsa does not necessarily maximize t-statistic or im-
prove power. The details on the connection between the t-statistic and SA can be found
in Appendix A.5.

3.4 Discussion

The analysis above shows that PCA, SA, and IVM do not necessarily minimize the vari-
ance of the aggregated treatment effects. PCA and IVM can also have interpretation
issues due to negative weights. In Section 3.4.1, I explain how to choose the weights to
minimize the variance and show the large-sample properties. In Section 3.4.2, I explain
other related methods.

3.4.1 Variance-minimizing weights

The previous subsections showed that PCA, SA, and IVM do not necessarily minimize
the asymptotic variance of the aggregated treatment effect. This subsection explains how
to choose the weights and conduct inference on the aggregated treatment effect if the
goal is to minimize the asymptotic variance. The weights are required to be nonnegative
and sum to one to ensure interpretability as defined in Section 2.3.1. A caveat to the
analysis is that this ignores bias. This can be thought of as computing the optimal
weights with β j = θ for j = 1, . . . , q. I will discuss how to take bias into account using
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statistical decision theory in Section 4.

Let β̂n be the estimator for β and Σ be the asymptotic variance of β̂n, where Σ is
positive definite. Let wvmc be the solution to the following problem

min
w∈Wcvx

w′Σw, (14)

where Wcvx is defined in (2) and “vmc” is the acronym for variance minimization subject
to convex weights. Let ŵvmc,n be the solution to (14) when Σ is replaced by its consis-
tent estimator Σ̂n. The following proposition characterizes the limiting distribution of
ŵ′

vmc,nβ̂n. Assumption A.25 requires consistency, and a central limit theorem applies for
β̂n and Σ̂n.

Proposition 3.10. Let Assumptions 2.2 and A.25 hold. Then,

√
n(ŵ′

vmc,nβ̂n −w′
vmcβ)

d−→ w′
vmcZβ + β′h⋆(Z̃),

where Zβ and h⋆(Z̃) are given in Theorem A.27.

The term h⋆(Z̃) captures the limiting distribution of the estimated weights, and can
be nonnormal due to the nonnegativitiy constraints in (2). Nevertheless, asymptotic
normality can be restored when wvmc > 0q. I show the details in Appendix A.7.4.

3.4.2 Other methods and discussion

Apart from PCA, IVM, and SA, other methods have been proposed to aggregate out-
comes and treatment effects. These methods typically require additional assumptions,
or data, or tuning parameters. I briefly review some of these methods below.

Recently, Hu et al. (2024) takes a measurement error approach and creates a linear
index for the latent variable. Their index require identification assumptions related to
nonlinear models with measurement errors (Hu and Schennach, 2008) to identify the
joint distribution of the latent variable and the observed outcomes. Fu and Green (2025)
uses an instrumental variables strategy to identify the treatment effect on the latent
outcome of interest. Their strategy requires exclusion restrictions and independence
assumptions and uses either the treatment or other measurements as an instrumental
variable. My approach is different in that I do not require a specific number of outcomes
or extra identification assumptions.

Anderson and Magruder (2023) is related in that they propose machine learning ap-
proaches to choose the weights to maximize power for aggregating outcomes in pre-
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analysis plans. They penalize their power function using a tuning parameter on the
Herfindahl-Hirschman index to avoid putting all weights on one outcome. Their ap-
proach requires cross-validation and choosing different possible outcomes. I take a
statistical decision approach, focus on mean-squared error as the objective, and allow
researchers to flexibly model the parameter space. My approach with adaptive regret
(to be introduced in Section 4) does not require the researcher to use a specific level of
misspecification.

Stoetzer et al. (2025) proposes a hierarchical item response approach to estimate the
treatment effect on the latent outcome using observed indicators. They require paramet-
ric assumptions on the latent variables and related indicators. Item response theory has
also been used in economics and psychometrics. In the psychometrics literature, Dou-
glas (2001) shows that when binary proxies are used, point identification of the latent
variable would require a large number of binary proxies. My approach does not require
a specific number of outcomes. See Williams (2019) for related identification results of
using item response theory to identify a latent variable that is used as an independent
variable. Lubotsky and Wittenberg (2006) also focuses on the scenario where there are
available proxies for a latent variable as an independent variable. Their strategy depends
on whether the error components in the proxies are independent, and they recommend
reporting both the instrumental variables estimator and the least squares estimator with-
out additional assumptions on the error terms.

Using additional data on costs and benefits, researchers have reported an aggregated
measure in terms of costs and benefits. For instance, Heckman et al. (2010) estimates the
benefit-cost ratio and the rate of return for the Perry Preschool Program, and Bhatt et al.
(2023) constructs an index based on social costs. I do not assume that researchers have
access to such data and focus on the statistical problem of aggregating outcomes.

Finally, researchers sometimes motivate the use of aggregation due to concerns about
multiple testing. Whether multiple hypothesis testing should be used depends on the
decision the researcher wants to make. See Romano et al. (2010) on a survey of multiple
testing, and Viviano et al. (2025) for an economic model on when multiple hypothesis
testing is appropriate.

4 A statistical decision approach

In this section, I develop a statistical decision framework to aggregate treatment effects.
The framework provides a principled approach using the mean-squared error in Section

24



2.3 as the objective, while ensuring interpretable weights. It also allows researchers to
flexibly incorporate their information on the relative quality of the outcomes.

To develop the theory, I introduce the decision problem in Section 4.1. Section 4.2
discusses the parameter space. Two approaches to estimate the weights are then consid-
ered. Section 4.3 considers the minimax approach and Section 4.4 considers the adaptive
approach. Section 4.5 shows how to conduct inference. Section 4.6 provides an imple-
mentation algorithm and summarizes.

4.1 The decision problem

This subsection introduces the researcher’s problem and defines the risk function. As-
sume the researcher observes a vector of treatment effects β̂ that follows

β̂ ∼ N(β, Σ), (15)

where β ≡ (β1, . . . , βq) ∈ Rq is the vector of population means and the variance matrix
Σ is assumed to be a known positive definite matrix. The above is the treatment effects
on the standardized outcomes (Assumption 2.2). The normal distribution in (15) can be
justified by a large-sample approximation and is mainly for exposition purposes.

The Gaussian assumption on treatment effects above has also been used in other con-
texts, such as recently in site selection and evidence aggregation problems (e.g., Gechter
et al. (2024), Ishihara and Kitagawa (2024), and Montiel Olea et al. (2025)), although they
have a different goal. In the setup of this paper, (15) models the distribution of multiple
correlated treatment effects. I also assume that the researcher reports a linear average
of treatment effects on the observed outcomes τ̂ = w′β̂ as in (1) with w ∈ Wcvx in (2).
Focusing on the class of weights Wcvx that are nonnegative and sum to one is to avoid
the problem of having interpretation issues as discussed in Section 2.3.1.

The assumption below ensures that the covariance matrix Σ in (15) is positive definite.

Assumption 4.1. Σ has real-valued eigenvalues bounded below by λlb > 0 and above by λub <

∞ where λub > λlb.

To measure the quality of β in capturing θ, define

b ≡ β− θ1q ∈ Rq. (16)

In terms of the running example (Example 2.1), b can be interpreted as how well the
treatment effects of various assets measures the treatment effect of wealth.
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The squared loss function is used to model the performance of the estimator τ̂ relative
to θ as in Section 2.3.2. Since τ̂ is a linear combination of β̂ in (1), I can write the loss
function as follows

L(w, β̂, θ) ≡ (τ̂ − θ)2 = (w′β̂− θ)2. (17)

The loss function is written as a function of w since the researcher’s action is to choose
the weights w in forming the estimator τ̂.

The risk function of the estimator τ̂ is the expectation of the loss function (17) with
respect to the distribution of β̂ in (15). For any b ∈ Rq and w ∈ Wcvx, the risk function
is defined as

R(w, b) ≡ E[L(w, β̂, θ)] = E[(w′β̂−w′β)2 + (w′β− θ)2] = w′Σw+ (w′b)2, (18)

where the last equality follows from (15), the definition of b in (16), and that w sums to
one.

4.2 Parameter space and maximum risk

In this subsection, I introduce various options to model and motivate the parameter
space of b. In terms of the running example on wealth, this is needed because the
quality of the treatment effects on different assets in capturing the effect on wealth is
unknown although the variance in Σ in (18) is known. Researchers may also have prior
information on the relative quality of the treatment effects on various assets.

Let S(B) be a nonempty parameter space on b and B ≥ 0 be a maximum level of
misspecification chosen by the researcher. In the following, I describe three examples to
show that S(B) can be flexible to reflect researcher’s restriction or prior information on
treatment effects. More details can be found in Appendix B.4.

Example 4.2 (Bounds on the overall magnitude). I start with the restriction in which the
researcher places an upper bound on the vector b in S(B) using the ℓp-norm of b for
p ≥ 1 (such as in Armstrong and Kolesár (2021b)). In this case, the parameter space can
be written as

S(B) = {b ∈ Rq : ∥b∥p ≤ B}. (19)

In terms of the running example on wealth, the above places an upper bound B on
the quality of treatment effect on different assets. If B = 0, this means β j = θ for each
j = 1, . . . , q (e.g., the treatment effect on each asset equals the treatment effect on wealth).
If B > 0, choosing p = ∞ can be interpreted as setting the same bound on each bj (i.e.,
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bj for each asset is bounded in [−B, B]). Choosing p ∈ [1, ∞) allows for some treatment
effects to be more important or having a better quality in capturing θ than others. △

Example 4.3 (Shape restrictions). Researchers can impose shape constraints when they
believe the treatment effects on some outcomes are more important than others.

In the entrepreneurial spirit index from Example 2.4, Bruhn et al. (2018) mentions
that two of the outcomes might not be directly affected by their consulting program, but
are driven by an improvement in business. Thus, they construct another entrepreneurial
spirit index that excludes these two outcomes.

In this empirical example, shape restrictions that make these two outcomes less im-
portant can be an informative alternative to dropping them directly. Let J0 be the set
that indices the two outcomes they exclude, and J1 be the set that indices the remaining
outcomes. A shape constraint that can be reasonable in this setting is κ|bj| ≤ |bℓ| for
j ∈ J1 and ℓ ∈ J0 where κ ∈ R controls the relative importance between outcomes in J0

and J1. Setting κ > 1 can be interpreted as the outcomes in J1 being more “important.”

Together with a bound on b as in Example 4.3, the above can be described as

S(B) = {b ∈ Rq : ∥b∥p ≤ B,Q|b| ≤ 0l},

where Q ∈ Rl×q and |b| refers to taking absolute value on b componentwise. Other
types of constraints can be used, such as Qb ≤ 0l. △

Example 4.4 (Communication and subjective weights). Another concern that researchers
may have is related to the communication of the weighted average of treatment effects
τ̂ to the reader. In terms of the running example (Example 2.1), readers may think the
treatment effect of the cash transfer program on wealth θ is the treatment effect on the
weighted average of assets, but have subjective views on what the weights should be for
each asset. The researcher’s decision has to take this communication issue into account.

This communication problem can be described through a parameter space on b. For
exposition purposes, consider the case that θ = γ ′β for some known γ ∈ Wcvx and
∥b∥p ≤ B as in Example 4.2. In this case, the vector of misspecification can be written as
b = β− (γ ′β)1q. In Appendix B.4, I show that this can be studied via a shape constraint
in the parameter space. In addition to a known γ, I show how to allow for an unknown
γ or ambiguity around a given γ. △

After defining the parameter space S(B), the maximum risk can be evaluated as the
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maximum of (18) over b ∈ S(B), i.e.,

Rmax(B,w) ≡ max
b∈S(B)

R(w, b) = w′Σw+ max
b∈S(B)

(w′b)2, (20)

where the second equality holds because the variance term is independent of b. By
Assumption 4.1, the variance component V(w) ≡ w′Σw is strictly convex in w be-
cause Σ is positive definite. Since S(B) is nonempty, the maximum bias M(B,w) ≡
maxb∈S(B)(w

′b)2 is convex in w for a given B ≥ 0 because it is a maximum of convex
functions (Boyd and Vandenberghe, 2004, Page 81).

4.3 Estimating weights using the minimax approach

This subsection takes a minimax approach to estimate the weights by minimizing the
worst-case risk over the parameter space. In terms of the running example on wealth, the
minimax approach chooses the weight on each asset by minimizing the worst possible
MSE over all possible quality of treatment effects on the assets specified in b ∈ S(B).

The minimax problem is

R⋆(B) ≡ min
w∈Wcvx

Rmax(B,w) = min
w∈Wcvx

[
V(w) + M(B,w)

]
, (21)

where the maximum risk is from (20). R⋆(B) is referred to as the minimax risk. Suppose
S(B) is bounded and nonempty. Following the discussion in Section 4.2, V(w) is strictly
convex in w and M(B,w) is convex in w. Hence, the objective of (21) is strictly convex.
It follows that (21) has a unique optimal solution. I denote the optimal solution to the
minimax problem (21) as follows:

w⋆(B) = arg min
w∈Wcvx

Rmax(B,w). (22)

The expression for M(B,w) depends on the parameter space. Computing the optimal
solution can be done by convex optimization and the details are in Appendix C.1.

In the following, I discuss three remarks on some special cases of the minimax prob-
lem (21) and an example with two outcomes to build more intuition.

Remark 4.5 (Variance minimization when B = 0). Consider B = 0 so that β j = θ for each
j = 1, . . . , q. This leads to M(B,w) = 0 and the objective of the minimax problem (21)
reduces to V(w). Hence, the optimal weight is the variance-minimizing weight. ■
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Remark 4.6 (Connection with matrix regularization). Assume the parameter space is as
described in Example 4.2 that restricts b with the ℓ2-norm, i.e., S(B) = {b ∈ Rq : ∥b∥2 ≤
B}. Then, M(B,w) = B2∥w∥2

2. The objective of (21) becomes Rmax(B,w) = w′(Σ +

B2Iq)w, where Iq is an identity matrix of size q × q. Thus, the optimal weight for the
minimax problem can be viewed as minimizing the quadratic form on the regularized
matrix Σ + B2Iq subject to w ∈ Wcvx. ■

Remark 4.7 (Connection with standardized weighting). Suppose B −→ ∞ and the pa-
rameter space is as described in Example 4.2 that restricts b with the ℓp-norm and
p ∈ (1, ∞). Then, the solution is (see Appendix Corollary B.11):

lim
B→∞

w⋆(B) =
1
q
1q.

Thus, the above is similar to SA which puts equal weights on each treatment effect
(although SA divides outcomes by the standard deviation from the control sample as
in Section 3.3). This provides a statistical decision-theoretic justification of using equal
weights as the optimal solution when B −→ ∞. ■

Example 4.8. Suppose the researcher observes two assets as in Example 2.1, so that
β̂ = (β̂1, β̂2)

′ and β = (β1, β2)
′. Assume ρ ∈ (−1, 1) and σ2 > 0, so (15) can be written

as (
β̂1

β̂2

)
∼ N

((
β1

β2

)
,

(
1 ρσ2

ρσ2 σ2
2

))
.

I assume σ2 ̸= 1 so the two treatment effects do not have the same variances. Suppose
the Euclidean norm is used to bound b ≡ (b1, b2)

′ in S(B) as in Example 4.2. Since
w1 + w2 = 1, I focus on characterizing the optimal solution for the first weight. The
optimal solution w⋆

1(B) for the minimax problem with two outcomes is given as follows:

w⋆
1(B) =


0 if σ2

2 − ρσ2 ≤ −B2,

1 if 1 − ρσ2 ≤ −B2,
σ2

2−ρσ2+B2

1+σ2
2−2ρσ2+2B2 otherwise.

(23)

The optimal weights in (23) depend on B, σ2
2 , and ρ. First, consider B = 0. The optimal

weight focuses on minimizing the variance of the estimator as discussed in Remark 4.5.
If the second treatment effect is more precise (i.e., σ2 < ρ < 1 here), then it is optimal to
set w⋆

1(0) = 0. This is reasonable because the treatment effect on both assets are unbiased
relative to the treatment effect on wealth when B = 0.
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As B increases, (23) suggests that it may not be optimal to put all the weights on
the second treatment effect even if σ2 < ρ. This is related to the correlation of the
two treatment effects and also because the second treatment effect might have a poorer
quality in capturing the treatment effect on wealth when B > 0.

As B −→ ∞, the optimal weights become w⋆
1(B) = 1

2 to reflect that researchers want
to be agnostic and put equal weights on both treatment effects as in Remark 4.7. △

4.4 Estimating weights using the adaptive approach

Solving the minimax problem in Section 4.3 requires the researcher to choose the value
B ≥ 0. However, researchers may not want to commit to a specific value of B, but
are willing to specify a set B ⊆ R such that B ∈ B. In the context of the running
example on wealth, researchers may want to choose the weights on assets that is optimal
over different upper bounds on the quality of different treatment effects. In particular,
researcher might want to find the weights that is a “middle ground” between variance
minimization (B = 0) and a large B. To avoid computing the weights that are optimal for
a specific value of B, I consider a recent adaptive framework by Armstrong et al. (2024).

4.4.1 Definitions

I briefly review the relevant definitions of the methodology proposed by Armstrong et al.
(2024). For a given w ∈ Wcvx and B ∈ B, the adaptive regret is defined as the following
ratio

A(B,w) ≡ Rmax(B,w)

R⋆(B)
=

Rmax(B,w)

Rmax(B,w⋆(B))
, (24)

where the maximum risk Rmax(B,w) and the minimax risk R⋆(B) have been defined in
(20) and (21) respectively. For a given w ∈ Wcvx, the adaptive regret can be interpreted
as how much worse w performs relative to an oracle that knows the optimal weight is
w⋆(B). In particular, 100[A(B,w)− 1]% equals the percentage increase in the worst-case
MSE.

They define
Amax(B,w) ≡ sup

B∈B
A(B,w)

as the worst-case adaptive regret, and

A⋆(B) ≡ inf
w∈Wcvx

sup
B∈B

A(B,w). (25)
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An estimator wA is optimally adaptive if

A⋆(B) = Amax(B,wA). (26)

4.4.2 Solving for the optimally adaptive weights

Solving the optimally adaptive weights using (25) directly involves two steps. First,
the inner problem finds the worst-case adaptive regret over B ∈ B for each w ∈ Wcvx.
Second, the outer problem chooses the weight that minimizes the worst-case adaptive
regret.

In this section, I derive new properties of the adaptive regret for the setup in Section
4.1. Before proceeding, I discuss some differences between my model and Armstrong
et al. (2024). This is because the properties developed below are based on a different
setup from Armstrong et al. (2024). First, I assumed that all treatment effects β̂ in (15) can
be misspecified relative to θ, whereas Armstrong et al. (2024) assumes that an unbiased
estimator is available. Allowing for all components in β̂ to be potentially misspecified
relative to θ is important under the context of aggregating outcomes. For instance, in
running example 2.1, it is unlikely that the treatment effect on each asset captures the
treatment effect on wealth perfectly. Second, I focus on the linear estimator (1) where the
weights w are restricted to the convex class of weights as in (2). Armstrong et al. (2024)
does not restrict their estimators to this class, and their solution approach is different.
The motivation for my restriction is to prevent the interpretation issues on the resulting
aggregated treatment effects as explained in Section 2.3.

First, I show a useful property on the adaptive regret under the assumption that is
satisfied by the parameter space introduced in Section 4.2.

Assumption 4.9. For any B ≥ 0, M(B,w) = B2m(w) for some function m : Rq −→ R where
m(w) ≥ 0 and is convex in w ∈ Wcvx.

For instance, in Example 4.2, M(B,w) = B2∥w∥2
p⋆ where the ℓp⋆-norm is the dual

norm for the ℓp-norm such that 1
p + 1

p⋆ = 1 (see, for instance, Boyd and Vandenberghe
(2004, Chapter A.1.6)). In this case, m(w) = ∥w∥2

p⋆ . I show the other cases in Appendix
B.4. The following proposition shows a useful property on the adaptive regret.

Proposition 4.10. Let Assumptions 2.2, 4.1, and 4.9 hold. Consider the minimax and adaptive
problems defined in (21) and (24), respectively. Let B = [B, B] where B ≥ B ≥ 0 and w ∈ Wcvx.

(a) A(B,w) has one of the following shapes:

(i) A(B,w) is monotone in B ∈ B.
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(ii) There exists B0 ∈ (B, B) such that A(B,w) is nonincreasing in B for any B ∈ [B, B0)

and nondecreasing in B for any B ∈ [B0, B].

(b) The worst-case adaptive regret is given by

Amax(B,w) = sup
B∈B

A(B,w) = max{A(B,w), A(B,w)}.

If B = ∞, then A(B,w) refers to limB→∞ A(B,w).

In the above, Proposition 4.10(a) shows the shape of the adaptive regret over B ∈ B
for each w ∈ Wcvx. It implies that the supremum over B ∈ B is achieved at the endpoints
under Assumption 4.9. This simplifies the computation of the inner problem in (25).

Suppose the parameter space is as described in Example 4.2 that restricts b using the
ℓp-norm with p ∈ (1, ∞). Then, the optimally adaptive weight can be interpreted as a
middle ground between the regret against the variance-minimizing weight (for B = 0)
and equal weighting (for B = ∞ in Remark 4.7).

The following proposition is another useful property on the optimally adaptive weight
wA. It shows that at the optimum, it cannot be the case where A(B,wA) ̸= A(B,wA)

when A(B,w) is strictly convex and continuous in w.

Proposition 4.11. Consider the same assumptions and definitions as in Proposition 4.10 with
B = [B, B] and B < B. Suppose that A(B,w) and A(B,w) are strictly convex and continuous
in w ∈ Wcvx. Let wA ∈ Wcvx be the optimally adaptive estimator as defined in (26). Then,

A(B,wA) = A(B,wA).

The assumptions on strictly convexity and continuity of the adaptive regret over
w ∈ Wcvx are satisfied by the functions and parameter spaces discussed in the previous
subsections. Strict convexity is satisfied when B is finite. This is because R⋆(B) > 0 is
finite, and from the definition in (24) that A(B,w) = Rmax(B,w)

R⋆(B) , where Rmax(B,w) is a
sum of strictly convex and convex functions in w ∈ Wcvx as defined in (21). In addition,
R⋆(B) is independent of w. Therefore, strictly convexity in w ∈ Wcvx follows. The adap-
tive regret A(B,w) is also continuous in w for a finite B and compact parameter spaces
S(B). To see this, recall again that Rmax(B,w) = V(w) + M(B,w) as defined in (21).
V(w) is continuous in w. M(B,w) = maxb∈S(B)(w

′b)2 is continuous due to the Berge
maximum theorem (see, for instance, Aliprantis and Border (2006, Theorem 17.31)).

Remark 4.12. In the case where A(B,w) is only convex in w ∈ Wcvx instead of strictly
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Figure 4: Illustration of A(0, w1) and limB→∞ A(B, w1) for the two-outcome example.
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Notes: The above shows the adaptive regret for the two-outcome example in Example 4.8. The
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1 = 1, σ2
2 = 2.25, and ρ = 0.2. The yellow vertical line shows the

point chosen by the adaptive approach.

convex, the worst-case adaptive regret is not necessarily strictly convex in w ∈ Wcvx.
Nevertheless, strict convexity can be restored by adding a small penalty term to the
function, i.e., replace A⋆([0, ∞],w) by A⋆

κ([0, ∞],w) ≡ A⋆([0, ∞],w) + κ∥w∥2
2 for a small

κ > 0. This is because A⋆([0, ∞],w) is convex in w and κ∥w∥2
2 is strictly convex in w for

κ > 0. This approach of adding a strictly convex penalty term is also used by Gafarov
(2025) for moment inequality models. ■

Computing the optimally adaptive weight can be done by convex optimization. I
show the details and explain how computing the optimal weight can be written as one
optimization problem in Appendix C.2.

Example 4.8 (continued). Assume that B = [0, ∞] and ρσ2 < 1. The optimally adaptive
weight on β̂1 is given by

w⋆
1(µ1) ≡

µ1[R⋆(0)−1(σ2
2 − ρσ2)− 2] + 2

µ1[R⋆(0)−1(σ2
2 − 2ρσ2 + 1)− 4] + 4

, (27)

where µ1 ∈ (0, 1) satisfies the optimality condition given in Appendix B.5.3 and the
minimax risk R⋆(0) is obtained by evaluating (B.40) at B = 0. The proof of (27) is in
Appendix B.5.3. I discuss the observations and intuitions below.

For exposition purposes, I present a numerical example with σ2
2 = 2.25 and ρ = 0.2

in Figure 4. The blue curve is the adaptive regret for B = 0. It is the regret relative to
the variance-minimizing weight (see Remark 4.5). The red curve is the adaptive regret
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for B = ∞. It is the regret relative to equal weighting that minimizes bias (see Remark
4.7). The optimally adaptive weight is achieved at the point where both curves intersect,
which is consistent with Proposition 4.11. This is also reflected in (27) that the optimally
adaptive weight is like a weighted average related to the Lagrange multiplier µ1.

Here are some intuitions that the optimally adaptive weight is not on the boundary
in this two-outcome example. The optimally adaptive weight minimizes the higher of
the two “costs” (bias squared and variance). If the optimally adaptive weight is on the
boundary, it has to be more costly to shift the weights to allow for positive weights on
both treatment effects. Assume without loss of generality that the solution is w1 = 1. But
when B = ∞, the potential bias can be enormous when w1 = 1 and the cost reduces when
the weights move to w1 < 1. Hence, for the optimally adaptive weight to be boundary,
it has to be that moving to the interior causes a higher cost in term of variance. This
can only be true if the variance is minimized when w1 = 1. But if w1 = 1 minimizes
variance, one can shift a small amount of weight to the second outcome that increases
variance by a bit, but has a larger reduction in bias squared, thereby giving a smaller
adaptive regret. It follows that w1 = 1 is not optimal. A similar analysis can be applied
for w1 = 0. Therefore, boundary weight is not optimal in this two-outcome example
with B = [0, ∞]. △

4.5 Inference

This section describes how to perform valid inference based on the minimax or adaptive
procedures. When B > 0, standard Wald confidence intervals for θ will not be valid
because the aggregated treatment effect is biased relative to θ. As a result, I construct
fixed-length confidence intervals (FLCI) that take the bias into account (Donoho, 1994;
Armstrong and Kolesár, 2018, 2021a,b).

4.5.1 Minimax approach

Let w⋆(B) be the solution to the minimax problem in (22). Then,

w⋆(B)′β̂− θ√
w⋆(B)′Σw⋆(B)

∼ N

(
w⋆(B)′b√

w⋆(B)′Σw⋆(B)
, 1

)
. (28)

The above holds due to the distributional assumption in (15).

A 100(1 − α)% fixed-length confidence interval centered around w⋆(B)′β̂ can be
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formed as
I ≡

[
w⋆(B)′β̂± cα

√
w⋆(B)′Σw⋆(B)

]
, (29)

where the critical value cα ∈ R is chosen to be the smallest value such that it controls
size, i.e., it is the smallest cα such that the following holds

max
b∈S(B)

P

[∣∣∣∣∣ w⋆(B)′β̂− θ√
w⋆(B)′Σw⋆(B)

∣∣∣∣∣ > cα

]
≤ α. (30)

4.5.2 Adaptive approach

Similar to the discussion in Section 4.5.1, one can construct a 100(1 − α)% confidence
interval for the adaptive weights chosen in Section 4.4 centered at the adaptive estimator.

Suppose the researcher adapts over B = [B, B]. Similar to the recommendation in
Armstrong et al. (2024), one choice is to construct FLCIs as in (29) but with w⋆(B)
replaced by the optimally adaptive weight and S(B) replaced with S(B) and S(B) in
order to summarize the range of critical values needed to guarantee coverage under
different assumptions.

4.5.3 Asymptotic validity

In the discussion so far, I assumed that Σ is known. In Appendix B.1, I show the de-
tails for the asymptotic validity of FLCI using a consistent estimator for Σ. The FLCI
constructs a confidence interval around θ. I provide additional procedures on inference
around w⋆(B)′β in Appendix B.7. This can be another useful approach in assessing the
uncertainty of the estimated weight.

4.6 Implementation and summary

This subsection summarizes the statistical decision-theoretic procedures.

Step 1. Estimates the treatment effects β̂n and asymptotic variance Σ̂n.

Step 2. Specify the parameter space (see Section 4.2).

Step 3. Estimate the weights using the minimax or adaptive approach.

(a) For the minimax approach, choose B ≥ 0 and solve (22).

(b) For the adaptive approach, choose B = [B, B] and solve (25).
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Step 4. Conduct inference using FLCI (see Section 4.5). See Appendix B.7 for additional
procedures for inference.

5 Empirical applications

In this section, I illustrate the methodology proposed in this paper by revisiting two
empirical examples.

5.1 Campante and Do (2014)

In the analysis of how state capital being isolated from population affects public good
provision, Campante and Do (2014, “CD” in the following) creates a PCA index of pub-
lic good provision. CD finds that state isolation has a negative effect on public good
expenditure. But CD points out that expenditure is not related to the effectiveness of
how resources are used. Hence, they create an index of public good provision using
PCA. As introduced in Example 2.3, the index aggregates the three outcomes “smartest
state” index (an index that measures educational outcomes), the percentage with health
insurance, and the log number of hospital beds using PCA.

Figure 5 presents the regression results on each standardized outcome and the corre-
sponding PCA weights. The regressions control for log area, log income, log population,
etc. The outcome of the log number of hospital beds received a negative weight. The
figure reports the 90% confidence interval that treats the weights as “fixed” as originally
implemented without accounting for the statistical uncertainty due to the estimated PCA
weights.

Next, I study the effect with my decision-theoretic approach. The results are pre-
sented in Figure 6. Panel (a) of the figure shows the results from the minimax approach,
and panel (b) shows the results from the adaptive approach. As discussed in Section 4.3,
B = 0 corresponds to the variance-minimizing weight. Setting large values of B leads to
the weights converge to having equal weights.

The aggregated treatment effects obtained from the minimax or adaptive approach in
Figure 6 show that the effect is positive and close to 0. The effect is also not significant at
the 10% level. This is at contrast with the treatment effect on the PCA index in Figure 5
that gives a negative effect. The difference in the sign and significance of the aggregated
treatment effect is related to the decision-theoretic approach that requires the weights to
be nonnegative. The PCA approach puts a negative weight on the outcome “log number
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Figure 5: Teatment effects and PCA weights for the CD application.
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Notes: Panel (a) shows the treatment effects on the individual outcomes and the PCA index, as
well as the 90% confidence intervals. Panel (b) shows the PCA weights on each outcome.

Figure 6: Results for the statistical decision approach (without shape restrictions) for the
CD application.
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Notes: In panel (a), the solid line shows the treatment effect using the minimax approach for
different values of B, and the dashed lines show the 90% FLCI. In panel (b), the dot represents
the treatment effect when adapting over [0, 10], and the bar represents the 90% FLCI.

of hospital beds per capita,” which has a positive treatment effect.

Since one might expect state isolation has a negative impact on public goods, the
effect of state isolation on the log number of hospital beds per capita might be biased,
so that there is a positive effect. To investigate what assumptions could support the
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Figure 7: Results for the statistical decision approach (with shape restrictions) for the
CD application.
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Notes: Each color corresponds to a specific value of κ on the shape constraint. See the notes under
Figure 6 for the meaning of the lines.

authors’ finding that there is a negative effect of capital isolation on the PCA index of
public good provision, I consider imposing shape restrictions that constrain the relative
importance of the outcomes. Let b ≡ (b1, b2, b3) ∈ R3 be as defined in (16), where b1 is the
component on the outcome “log number of hospital beds per capita.” Then, I explore
whether a negative impact can be found by making the treatment effect on hospital
beds “less important.” More specifically, I impose a shape restriction as κ|b1| ≤ |bj|
for j ∈ {2, 3} where κ can be interpreted as varying the relative importance of hospital
beds against the two other outcomes. A larger value of κ means the treatment effect on
hospital beds is less important than the treatment effect on other outcomes.

Figure 7 reports the results with shape restrictions under different values of κ. As
κ increases, the emphasis on the number of hospital beds in the treatment effect of the
aggregated outcome reduces. The figure suggests that to support the claim that there is
a negative impact of state isolation on public good provision, one has to allow for B > 0
and put less emphasis on the number of hospital beds. Despite a negative effect can be
found when B is large for κ = 3, they are not significant at the 10% level.

5.2 Bruhn et al. (2018)

Bruhn et al. (2018, “BKS” in the following) studies the impact of management consult-
ing services on small and medium enterprises. To understand whether firm growth is
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Figure 8: Treatment effects and PCA weights for the BKS application.
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affected by managerial skills, BKS ran a randomized controlled trial in Mexico with 432
small and medium enterprises. 150 out of the 432 enterprises were randomly chosen
to receive subsidized consulting services that lasted for one year. The consultants were
asked to examine the problems that prevented firm growth, to suggest solutions, and to
help implement them. BKS studies how such consulting programs affect the enterprises’
productivity, return on assets, and “entrepreneurial spirit.”

Entrepreneurial spirit is an index that aggregates outcomes on entrepreneurial atti-
tudes, confidence, and goal setting. BKS constructs entrepreneurial spirit indices using
two sets of outcomes as shown below.

Set 1. This includes all eight variables shown in Figure 8.

Set 2. This excludes “I can’t motivate my business partners” and “everything I need for
success lies in myself.”
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Figure 9: Results for the statistical decision approach (without shape restrictions) for the
BKS application.
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BKS also considers Set 2 in addition to Set 1 because they are concerned that improve-
ment in some outcomes are due to improvement in business instead of the consulting
program. They pointed out that the two outcomes excluded in Set 2 are particularly
subject to this interpretation. Thus, they examine the impact of the consulting program
on the entrepreneurial index defined via these two sets of outcomes. For each set of
outcomes, they construct one index via PCA and another index using SA. I focus on the
regression specification without controlling for baseline outcomes because BKS found
a significant effect using the PCA index but not for the SA index at the 10% level in
this specification. Figure 8 shows the treatment effects on standardized outcomes, PCA
index, and SA index, as well as the PCA weights. The regressions control for strata
dummies and re-randomization variables (such as the principal decision maker’s years
of schooling, business age, and whether the principal decision maker is male). It also
shows the 90% confidence intervals as in the original analysis. See the appendix on how
to adjust for the standard errors.

First, I apply my decision-theoretic approach on Set 1 of the outcomes. Figure 9
summarizes the results for the minimax and adaptive approach. Panel (a) of Figure 9
shows the treatment effects using the minimax optimal weights for B ∈ [0, 10]. I am able
to find a positive effect of the consulting program on entrepreneurial spirit. However,
the results are not significant at the 10% level.

Next, I examine what can be learned from data if there is a concern that some out-
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Figure 10: Results for the statistical decision approach (with shape restrictions) for the
BKS application.
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comes are not directly affected by the consulting program. BKS reran the analysis by
considering Set 2 of the outcomes that dropped two outcomes. Instead of dropping
them, I study the effect by imposing shape restrictions as in Example 4.3, where I make
the two outcomes less important. The relative importance is controlled by the parameter
κ > 0. The results are summarized in Figure 10. I can still find a positive effect, but they
are not significant at the 10% level.

6 Conclusion

Researchers often observe multiple related outcomes that are related to an underlying
abstract concept, such as crime and wealth. The outcomes are often aggregated into
an index in order to evaluate the treatment effect on these abstract concepts. In this
paper, I first studied the properties and issues of the three most popular approaches,
namely PCA, SA, and IVM. I show that PCA has several unattractive properties. PCA
can have negative weights, does not necessarily maximize precision, is sensitive to ar-
bitrary choices of normalization, and can lead to non-standard limiting distributions.
IVM does not suffer from the last two issues, but also has the negative weighting prob-
lem. Although PCA and IVM use the correlation information in computing the weights,
they do not use the variance matrix of the treatment effects. SA does not have negative
weights, but it does not use the correlation structure of the outcomes.
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I proposed a statistical decision-theoretic approach to aggregate outcomes that min-
imizes the mean-squared error of the aggregated treatment effect while ensuring inter-
pretable weights. The weights can be computed by the minimax or the adaptive regret
criterion. The adaptive regret criterion has the advantage that it does not require the
researcher to commit to a specific level of misspecification. I show that convex opti-
mization can be used to compute the weights. I illustrated my approach through two
empirical applications.
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GÓMEZ, M. (2024): “Indexes and Multiple Hypothesis Testing,” .

44



GOODMAN-BACON, A. (2021): “Difference-in-differences with variation in treatment tim-
ing,” Journal of Econometrics, 225, 254–277, themed Issue: Treatment Effect 1.

HASTIE, T., R. TIBSHIRANI, J. FRIEDMAN, ET AL. (2009): “The elements of statistical
learning,” .

HECKMAN, J., R. PINTO, AND P. SAVELYEV (2013): “Understanding the Mechanisms
through Which an Influential Early Childhood Program Boosted Adult Outcomes,”
American Economic Review, 103, 2052–86.

HECKMAN, J. J., S. H. MOON, R. PINTO, P. A. SAVELYEV, AND A. YAVITZ (2010): “The
rate of return to the HighScope Perry Preschool Program,” Journal of public Economics,
94, 114–128.

HOTELLING, H. (1933): “Analysis of a complex of statistical variables into principal com-
ponents.” Journal of educational psychology, 24, 417.

HU, Y. AND S. M. SCHENNACH (2008): “Instrumental Variable Treatment of Nonclassical
Measurement Error Models,” Econometrica, 76, 195–216.

HU, Y., J.-L. SHIU, Y. XIN, AND J. YAO (2024): “Optimal Linear Rank Indexes for Latent
Variables,” Working Paper.

ISHIHARA, T. AND T. KITAGAWA (2024): “Evidence Aggregation for Treatment Choice,”
Tech. rep., Working Paper.

JACKSON, J. E. (2005): A user’s guide to principal components, John Wiley & Sons.

JAMES, G., D. WITTEN, T. HASTIE, AND R. TIBSHIRANI (2021): An introduction to statisti-
cal learning: with applications in R, vol. 103, Springer.

JOLLIFFE, I. T. (2002): Principal component analysis, Second edition, Springer.

JONES, D., D. MOLITOR, AND J. REIF (2019): “What do Workplace Wellness Programs
do? Evidence from the Illinois Workplace Wellness Study*,” The Quarterly Journal of
Economics, 134, 1747–1791.

KASY, M. AND J. SPIESS (2024): “Optimal Pre-Analysis Plans: Statistical Decisions Subject
to Implementability,” .

KLING, J. R. AND J. B. LIEBMAN (2004): “Experimental analysis of neighborhood effects
on youth,” SSRN Electronic Journal.

KLING, J. R., J. B. LIEBMAN, AND L. F. KATZ (2007): “Experimental Analysis of Neigh-
borhood Effects,” Econometrica, 75, 83–119.

KOLENIKOV, S. AND G. ANGELES (2009): “SOCIOECONOMIC STATUS MEASURE-
MENT WITH DISCRETE PROXY VARIABLES: IS PRINCIPAL COMPONENT ANAL-
YSIS A RELIABLE ANSWER?” Review of Income and Wealth, 55, 128–165.

45



KOSOROK, M. R. (2008): Introduction to empirical processes and semiparametric inference,
Springer.

LUBOTSKY, D. AND M. WITTENBERG (2006): “Interpretation of regressions with multiple
proxies,” The Review of Economics and Statistics, 88, 549–562.

MAGNUS, J. R. AND H. NEUDECKER (2019): Matrix differential calculus with applications in
statistics and econometrics, John Wiley & Sons, 3 ed.

MANSKI, C. F. (2004): “Statistical treatment rules for heterogeneous populations,” Econo-
metrica, 72, 1221–1246.

MARDIA, K. V., J. T. KENT, AND C. C. TAYLOR (1979): Multivariate analysis, John Wiley
& Sons.

——— (2024): Multivariate analysis, John Wiley & Sons.

MEYER, C. D. (2023): Matrix analysis and applied linear algebra, Society for Industrial and
Applied Mathematics, 2 ed.

MONTIEL OLEA, J. L., B. PRALLON, C. QIU, J. STOYE, AND Y. SUN (2025): “Externally
Valid Selection of Experimental Sites via the k-Median Problem,” .

MURPHY, K. M. AND R. H. TOPEL (1985): “Estimation and inference in two-step econo-
metric models,” Journal of Business & Economic Statistics, 3, 88–97.

NICULESCU, C. P. AND L.-E. PERSSON (2018): Convex Functions and Their Applications: A
Contemporary Approach, Springer., 1 ed.

NOCEDAL, J. AND S. J. WRIGHT (2006): Numerical optimization, Springer.

O’BRIEN, P. C. (1984): “Procedures for comparing samples with multiple endpoints,”
Biometrics, 1079–1087.

PAGAN, A. (1984): “Econometric Issues in the Analysis of Regressions with Generated
Regressors,” International Economic Review, 25, 221–47.

PARKER, S. W. AND T. VOGL (2023): “Do Conditional Cash Transfers Improve Economic
Outcomes in the Next Generation? Evidence from Mexico,” The Economic Journal, 133,
2775–2806.

PEARSON, K. (1901): “LIII. On lines and planes of closest fit to systems of points in space,”
The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2, 559–572.

R CORE TEAM (2025): “Principal Components Analysis,” https://stat.ethz.

ch/R-manual/R-devel/library/stats/html/princomp.html, accessed: September 2,
2025.

ROMANO, J. P., A. M. SHAIKH, AND M. WOLF (2010): “Hypothesis testing in economet-
rics,” Annual Review of Economics, 2, 75–104.

46

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html


SAVAGE, L. J. (1951): “The theory of statistical decision,” Journal of the American Statistical
association, 46, 55–67.

SHAPIRO, A. (1993): “Asymptotic behavior of optimal solutions in stochastic program-
ming,” Mathematics of Operations Research, 18, 829–845.

SHAPIRO, A., D. DENTCHEVA, AND A. RUSZCZYNSKI (2021): Lectures on Stochastic Pro-
gramming: Modeling and Theory, Third Edition, Philadelphia, PA: Society for Industrial
and Applied Mathematics.

STAIGER, D. AND J. H. STOCK (1997): “Instrumental Variables Regression with Weak
Instruments,” Econometrica, 65, 557–586.

STATACORP (2025): “Stata 19 Base Reference Manual,” https://www.stata.com/

manuals/mvpca.pdf, accessed: September 2, 2025.

STEWART, G. W. (2001): Matrix Algorithms: Volume II: Eigensystems, SIAM.

STEWART, G. W. AND J.-G. SUN (1990): Matrix perturbation theory, Academic Press, Inc.

STOETZER, L. F., X. ZHOU, AND M. STEENBERGEN (2025): “Causal inference with latent
outcomes,” American Journal of Political Science, 69, 624–640.

SUN, L. AND S. ABRAHAM (2021): “Estimating dynamic treatment effects in event studies
with heterogeneous treatment effects,” Journal of Econometrics, 225, 175–199, themed
Issue: Treatment Effect 1.

SŁOCZYŃSKI, T. (2024): “When Should We (Not) Interpret Linear IV Estimands as LATE?”
Tech. rep.

TABER, C. (2020): “Thoughts on “Transparency in Structural Research”,” Journal of Busi-
ness & Economic Statistics, 38, 726–727.

TAMER, E. (2020): “Discussion on “Transparency in Structural Research” by I. Andrews,
M. Gentkow and J. Shapiro,” Journal of Business & Economic Statistics, 38, 728–730.

THE MATHWORKS INC. (2025): “pca Principal component analysis of raw data,” https:

//www.mathworks.com/help/stats/pca.html, accessed: September 2, 2025.

VARIAN, H. R. (2014): Intermediate microeconomics: a modern approach, W. W. Norton &
Company, 9 ed.
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Appendix

A Appendix for Section 3

In the appendix, I assume that {(Di,X ′
i ,Y

′
i )}n

i=1 are i.i.d. across i.

A.1 Additional results for the examples on substitutes

A.1.1 Details for Example 3.4

Consider the setup and the optimal solution (7) in Example 3.4 and recall that (Vi, Di, Ai)

are assumed to be mutually independent.

To compute the correlation terms, note that

E[Y⋆
i,1Y⋆

i,2] =
1
p2

E[Ai(1 − Ai)Incomei(Di)
2] =

1
p2

E[Ai(1 − Ai)]E[Incomei(Di)
2],

E[Y⋆
i,1] = E[AiIncomei(Di)] = E[Ai]E[Incomei(Di)],

E[Y⋆
i,2] =

1
p2

E[(1 − Ai)Incomei(Di)] =
1
p2

E[(1 − Ai)]E[Incomei(Di)],

because Ai ⊥⊥ Di by assumption.

Write µA ≡ E[Ai], σ2
A ≡ Var[Ai] = E[A2

i ]− E[Ai]
2, µI ≡ E[Incomei(Di)], and σ2

I ≡
Var[Incomei(Di)] = E[Incomei(Di)

2]− E[Incomei(Di)]
2. Hence, the covariance between

Y⋆
i,1 and Y⋆

i,2 can be computed as

Cov[Y⋆
i,1, Y⋆

i,2] =
1
p2

[
µA(1 − µA)σ

2
I − σ2

A(µ
2
I + σ2

I )
]

.

It follows that Cov[Y⋆
i,1, Y⋆

i,2] < 0 if and only if

µA(1 − µA)σ
2
I < σ2

A(µ
2
I + σ2

I ).

Now, I return to the numerical specification in Example 3.4 where p2 = 2, P[Ai =

0.2] = P[Ai = 0.8] = 0.5, P[Di = 0] = P[Di = 1] = 0.5, Incomei(Di) = 10 + 5Di + Vi,
where Vi ∼ Uniform[0, 5] and (Vi, Di, Ai) are mutually independent. Hence,

E[Ai] = 0.5,

Var[Ai] = E[A2
i ]− E[Ai]

2 = 0.5(0.82 + 0.22)− 0.52 = 0.09,

49



E[Incomei(Di)] = 15,

Var[Incomei(Di)] =
25
3

.

As a result,

µA(1 − µA)σ
2
I = 0.5(1 − 0.5)

25
3

=
25
12

,

and
σ2

A(µ
2
I + σ2

I ) = 21.

Hence, Cov[Y⋆
i,1, Y⋆

i,2] =
25
12−21

p2
= −9.4583. To compute the correlation, note that

Var[Y⋆
i,1] = Var[AiIncomei(Di)]

= E[A2
i ]E[Incomei(Di)

2]− {E[Ai]E[Incomei(Di)]}2

= 0.5(0.82 + 0.22)

(
152 +

25
3

)
− (7.5)2

=
277
12

,

and

Var[Y⋆
i,2] =

1
p2

2
Var[(1 − Ai)Incomei(Di)]

=
E[(1 − Ai)

2]E[Incomei(Di)
2]− {E[(1 − Ai)]E[Incomei(Di)]}2

p2
2

=
E[A2

i ]E[Incomei(Di)
2]− {E[Ai]E[Incomei(Di)]}2

p2
2

=
277
48

.

Therefore, Corr[Y⋆
i,1, Y⋆

i,2] ≈ −0.82.

A.1.2 Additional example with perfect substitutes

Consider a stylized two-good example below where Yi,1 and Yi,2 represent two assets
(e.g., cows and sheep). Suppose the agents view them as perfect substitutes (see, e.g.,
Chapter 5 of Varian (2014)). More precisely, consider the following consumer optimiza-
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tion problem

(Yi,1, Yi,2) = arg max
y1,y2

y1 + Aiy2

s.t. y1 + p2y2 ≤ Incomei(Di),
(A.1)

where the price of good 1 is normalized to 1, p2 is the price of good 2, Incomei(Di) ≥ 0
is an income specific to individual i that is affected by Di ∈ {0, 1}, and Ai is the utility
parameter for individual i that follows a truncated normal distribution with mean µ,
variance 1, and bounded in [A, A]. Assume that Ai is independent of Incomei(Di) and
that 0 < A < p2 < A.

The optimal solution to (A.1) is given by

(Yi,1, Yi,2) =


(0, Incomei(Di)

p2
) Ai

p2
> 1,

{(t, Incomei(Di)−t
p2

) : t ∈ [0, Incomei(Di)]} Ai
p2

= 1,

(Incomei(Di), 0) Ai
p2

< 1.

(A.2)

Using the optimal consumption bundle (A.2), I have

E[Yi,1] = E[Yi,1|Ai > p2]P[Ai > p2] + E[Yi,1|Ai = p2]P[Ai = p2]

+ E[Yi,1|Ai < p2]P[Ai < p2]

= E[Incomei(Di)]P[Ai < p2]

where the first equality follows from the law of total probability, the second equality
follows from P[Ai = p2] = 0 and Yi,1 = 0 for Ai > p2, and the last equality follows
from the independence of Ai and Incomei(Di). The term P[Ai < p2] has a closed-form
expression as by the properties of truncated normal distribution.

Similarly,

E[Yi,2] = E[Yi,2|Ai > p2]P[Ai > p2] + E[Yi,2|Ai = p2]P[Ai = p2]

+ E[Yi,2|Ai < p2]P[Ai < p2]

=
1
p2

E[Incomei(Di)]P[Ai > p2].
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I also have

E[Yi,1Yi,2] = E[Yi,1Yi,2|Ai > p2]P[Ai > p2] + E[Yi,1Yi,2|Ai = p2]P[Ai = p2]

+ E[Yi,1Yi,2|Ai < p2]P[Ai < p2]

= 0,

where the equality follows because Yi,1Yi,2 = 0 for Ai ̸= p2 and P[Ai = p2] = 0.

Combining the above results, the covariance of the pair of goods is

Cov[Yi,1, Yi,2] = E[Yi,1Yi,2]− E[Yi,1]E[Yi,2]

= − 1
p2

E[Incomei(Di)]
2P[Ai < p2]P[Ai > p2]

< 0, (A.3)

where the inequality follows because A < p2 < A and Incomei(Di) > 0.

It follows that the two outcomes are negatively correlated with each other. Thus, the
PCA approach is going to put weights with opposite signs on the two outcomes. This
PCA index is again counterintuitive as in Section A.1.1.

A.2 Proofs for propositions in the main text

To begin with, I impose the following high-level assumption in the large-sample anal-
ysis. It requires the treatment effects and variance estimators to be consistent and that
a suitable central limit theorem applies to characterize the limiting distribution. As As-
sumption 2.2 is imposed, β̂n is estimated using the standardized outcome and Σ is the
corresponding asymptotic variance matrix of the treatment effects using the standard-
ized outcomes. To allow for possibly general choices of the matrix used to compute the
PC1, I use Ω and Ω̂n below. In the case that the correlation matrix of Yi is used, Ω is ΣY

and Ω̂n is the corresponding consistent estimator.

Assumption A.1.

(a) β̂n and Ω̂n are consistent estimators for β and Ω respectively.

(b)
√

n

(
β̂n − β

vech[Ω̂n − Ω]

)
d−→
(

Zβ

Zvech[Ω]

)
∼ N

((
0q

0ℓ

)
,

(
Σ Ψ′

Ω,β

ΨΩ,β ΨΩ

))
.

In the above, ℓ ≡ q(q+1)
2 is the number of entries in the lower triangular portion of the

symmetric variance matrix Ω. vech(·) is the half-vectorization notation that stacks the
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columns of the lower triangular portion of the matrix into one vector of length ℓ. For
example, vech[( x1 x2

x2 x3 )] = (x1, x2, x3)
′.

In light of the above assumption, in the following, I show a slightly more general
result to Proposition 3.6, where PCA uses Ω instead of ΣY. I use {(νj, λj)}

q
j=1 in Section

3.1.1 be the eigenpairs of Ω instead and that Assumption 3.1 is applied to Ω instead of
ΣY.

The proof proceeds as follows. Let l ∈ Rq such that c ̸= l and l′wpca > 0. Let ν̂n,1 =

arg maxw:w′w=1,l′w≥0 w
′Ω̂nw be an estimator of wpca and ς̂n ≡ sign(c′ν̂n,1). Hence,

ŵpca,n = ς̂nν̂n,1. First, by a similar reasoning as in Proposition A.19, I have

√
n(ν̂ ′

n,1β̂n −w′
pca,nβ) =

√
n(ν̂ ′

n,1β̂n − ν̂n,1β+ ν̂n,1β−w′
pca,nβ)

= ν̂ ′
n,1[

√
n(β̂n − β)] + β′[

√
n(ν̂n,1 −wpca,n)]

d−→
(
w′

pca β′Bν

)( Zβ

Zvech[Ω]

)
≡ Zτ. (A.4)

Next, note that

{ς̂n = 1} = {c′ν̂n,1 ≥ 0}
= {

√
n(c′ν̂n,1 − c′wpca,n) ≥ −

√
nc′wpca,n}

= {
√

nc′(ν̂n,1 −wpca,n) ≥ −δ} (A.5)

where the first line uses the definition of ς̂n, the second line subtracts
√

nc′wpca,n on
both sides, and the third line uses the assumption on c′wpca,n. Using the notations of
Assumption A.1 and (A.4), I have

√
n

(
ν̂ ′

n,1β̂n −w′
pca,nβ

c′(ν̂n,1 −wpca,n)

)
=

(
ν̂ ′

n,1 β′

0′q c′

)( √
n(β̂n − β)

√
n(ν̂n,1 −wpca,n)

)
d−→
(
w′

pca β′

0′q c′

)(
Zβ

BνZvech[Ω]

)
. (A.6)

Next, write

√
n(τ̂n − τn) =

√
n(ŵ′

pca,nβ̂n −w′
pca,nβ)

=
√

n(ς̂nν̂
′
n,1β̂n −w′

pca,nβ)
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=
√

n(ς̂nν̂
′
n,1β̂n − ς̂nw

′
pca,nβ+ ς̂nw

′
pca,nβ−w′

pca,nβ)

= ς̂n
√

n(ν̂ ′
n,1β̂n −w′

pca,nβ) + (ς̂n − 1)
√

n(w′
pca,nβ), (A.7)

where the first line uses the definition of τ̂n and τn, the second line uses the definition of
ŵpca,n in the beginning of the proof, and the third line adds and subtracts.

Hence, for any t ∈ R,

P[
√

n(τ̂n − τn) ≤ t]

= P[
√

n(τ̂n − τn) ≤ t, ς̂n = 1] + P[
√

n(τ̂n − τn) ≤ t, ς̂n = −1]

= P[
√

n(ν̂ ′
n,1β̂n −w′

pca,nβ) ≤ t, ς̂n = 1]

+ P[−
√

n(ν̂ ′
n,1β̂n −w′

pca,nβ) ≤ t + 2
√

n(w′
pca,nβ), ς̂n = −1]. (A.8)

Let C ≡ [tlb, tub] be the interval as defined in the statement of the proposition.
Since w′

pca,nβ ̸= 0 by the hypothesis of the proposition, 2
√

n(w′
pca,nβ) diverges to ∞

if w′
pca,nβ > 0 and to −∞ if w′

pca,nβ < 0. By (A.4),
√

n(ν̂ ′
n,1β̂n −w′

pca,nβ) is tight. In
addition, {ς̂n = −1} = {

√
nc′(ν̂n,1 −wpca,n) < −δ} by (A.5). The above facts and with

(A.6), I have

lim
n→∞

P[−
√

n(ν̂ ′
n,1β̂n −w′

pca,nβ)− 2
√

n(w′
pca,nβ) ∈ C, ς̂n = −1] = 0. (A.9)

Using (A.8) and (A.9), I have

lim
n→∞

P[
√

n(τ̂n − τn) ∈ C] = lim
n→∞

P[
√

n(ν̂ ′
n,1β̂n −w′

pca,nβ) ∈ C, ς̂n = 1]

≤ lim
n→∞

P[ς̂n = 1]

= lim
n→∞

P[
√

nc′(ν̂n,1 −wpca,n) ≥ −δ]

= P[c′BνZvech[Ω] ≥ −δ], (A.10)

where the first line follows from (A.8) and (A.9), the third line follows from (A.5), and
the fourth line follows from (A.6). The result of the proposition follows from taking the
limit as δ ↓ 0 and that c′BνZvech[Ω] is normal.

Proof of Proposition 3.9. The problem is a strictly convex problem because Σ is positive
definite and the constraint is affine. Let the Lagrangian of the optimization problem be

L = w′Σw+ µ(1 −w′1q).
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The first-order condition with respect to w is 2Σw− µ1q = 0. Solving,

w =
1
2

µΣ
−1

1q. (A.11)

Substituting this to the constraint gives 1
2 µ1′qΣ

−1
1q = 1. This means µ = 2

1′qΣ
−1

1q
. This

is well-defined because Σ is positive definite, so 1′qΣ
−1

1q > 0. Substituting this back to
(A.11) gives

w =
Σ
−1

1q

1′qΣ
−1

1q
. (A.12)

When Σ is an equicorrelation matrix, it can be written as Σ = (1 − ρ)Iq + ρ1q1
′
q for

some ρ ∈ (0, 1). Then,

Σ
−1

1q =
1

1 + (q − 1)ρ
1q and 1′qΣ

−1
1q =

q
1 + (q − 1)ρ

.

Substituting the above into (A.12) gives 1
q1q as the optimal solution.

A.3 Supplemental results and proofs

A.3.1 Supplemental results on the linear model

Lemma A.2. Suppose the researcher observes {(Di,X ′
i ,Y

′
i )}n

i=1, where Di ∈ R, Xi ∈ Rdx ,
Yi ≡ (Yi,1, . . . , Yi,j) ∈ Rq, and the intercept is contained in Xi. Consider the following estima-
tors and linear models.

(a) For each outcome j = 1, . . . , q, consider the linear model

Yi,j = β jDi + ζ ′jXi + Ui,j, (A.13)

where β j ∈ R, ζj ∈ Rdx , Ui,j ∈ R, and i = 1, . . . , n. Let β̂n ≡ (β̂n,1, . . . , β̂n,q)′ ∈ Rq

where β̂n,j is the estimator of β j in (A.13).

(b) Let wn ∈ Rq be a vector of weights that is potentially data-dependent and consider the
linear model

w′
nYi = τDi + ζ

′
Xi + Ui, (A.14)

where τ ∈ R, ζ ∈ Rdx , and Ui ∈ R for i = 1, . . . , n. Let τ̂n be the estimator of τ in
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(A.14).

Write D ≡ (D1, . . . , Dn)′, X ≡ (X1, . . . ,Xn)′, P ≡ X(X ′X)−1X ′ and M ≡ In − P

where In is the identity matrix. Assume D′MD is invertible. Then, τ̂n = w′
nβ̂n.

Proof of Lemma A.2. Write Ỹj ≡ (Y1,j, . . . , Yn,q)′ for j = 1, . . . , q, and Y ≡ (Ỹ1, . . . , Ỹq)′.
Then, from (A.13) and the Frisch-Waugh-Lovell (FWL) theorem, I have

β̂n,j = (D′MD)−1(D′MỸj), (A.15)

for j = 1, . . . , n.

Next, for (A.14), I have

τ̂n = (D′MD)−1[D′M (Ỹ wn)] = w′
nβ̂n, (A.16)

using (A.15). Hence, the result follows.

The following lemma discusses the implications of Remark 2.6. In the case of stan-
dardizing w′

nYi, it means setting an as the sample mean of w′
nYi and bn as the sample

standard deviation of w′
nYi. In the case of rescaling w′

nYi to [0, 1], it means setting
an = mini=1,...,n w

′
nYi and bn = maxi=1,...,n w

′
nYi.

Lemma A.3. Consider the same assumptions and notations as in Lemma A.2. Let an, bn ∈ R

be potentially data-dependent parameters. Define Zi ≡ w′
nYi−an

bn
for i = 1, . . . , n where bn ̸= 0.

Consider the model

Zi = τzDi + ζ ′zXi + Vi, (A.17)

where τz ∈ R, ζz ∈ Rdx , and Vi ∈ R. Let τ̂z,n = τ̂n
bn

.

Proof of Lemma A.3. Using the definition of Zj, define Z ≡ (Z1, . . . , Zn)′ =
1
bn
(w′

nY1 −
an, . . . , . . . ,w′

nYn − an) =
1
bn
(Ỹ wn − an1n). Using the FWL theorem on (A.17), I have

τ̂z,n = (D′MD)−1(D′MZ)

=
1
bn

(D′MD)−1(D′MỸ wn)−
an

bn
(D′MD)−1(D′M1n)

=
1
bn

τ̂n,

by Lemma A.2.
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Note that whenever the post-processing step is such that bn ̸= 1, then even if β̂n,j = β

for j = 1, . . . , n and w′1q = 1, τ̂z,n will not be equal to β.

A.3.2 Supplemental results on eigenvectors

Lemma A.4. Let Assumption 3.1 hold. Suppose that c′ν1 ̸= 0. Let wpca be the optimal solution
to the problem (4). Then, wpca = sign(c′ν1)ν1.

Proof of Lemma A.4. For notational simplicity, denote ν̃1 ≡ sign(c′ν1)ν1. Assume to the
contrary that wpca ̸= ν̃1. First, I verify that ν̃1 is an optimal solution to (4). Note that
c′ν̃1 = sign(c′ν1)c

′ν1 ≥ 0 by definition and ν̃ ′
1ν̃1 = ν ′

1ν1 = 1 since ν1 has unit length.
Hence, ν̃1 is a feasible solution to (4). On the other hand,

ν̃ ′
1ΣYν̃1 = sign(c′ν1)

2ν ′
1ΣYν1 = ν ′

1ΣYν1 = λ1,

because (ν1, λ1) is an eigenpair of ΣY. Hence, ν̃1 is an optimal solution to (4).

Since the leading eigenvalue is unique from Assumption 3.1, it follows that wpca and
ν̃1 are parallel to each other. If wpca ̸= ν̃1, it can only be that wpca = −ν̃1 since both
vectors have unit length. But this implies

c′wpca = −c′ν̃1 = − sign(c′ν̃1)c
′ν̃1 < 0,

where the inequality follows because sign(c′ν̃1)c
′ν̃1 ≥ 0 and c′ν̃1 ̸= 0 by the hypothesis.

But this contradicts that wpca solves (4) because it satisfies c′wpca ≥ 0. This completes
the proof.

A.4 Precision analysis with standardized outcomes

This section studies how standardizing outcomes using the sample standard deviation
affects the limiting distribution. Under Assumption 2.2, Yi represents the standardized
and oriented outcome. The following vectorized representation that stacks (8) over j =
1, . . . , q will be helpful in latter analysis:

Yi = ξ+ βDi +Ui, (A.18)

where β ≡ (β1, . . . , βq)′, ξ ≡ (ξ1, . . . , ξq)′, and Ui ≡ (Ui,1, . . . , Ui,q)
′.

Let Ỹi,j be the jth outcome before standardization for j = 1, . . . , q. To keep the analysis
general, I will allow for a general choice of how the outcomes are standardized, and
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assume they are divided by ŝn,j for j = 1, . . . , q. In the following, ŝn,j can be the sample
standard deviation of outcome j using the full sample, control sample, or other choices.
Hence,

Yi,j = ŝ−1
n,j Ỹi,j. (A.19)

Let β̂n be the treatment effect of Di on Yi and ̂̃βn be the treatment effect of Di on Ỹi

(potentially using additional covariates). By Lemma A.2, it means that

β̂n = diag[ŝn]
−1 ̂̃βn and β = diag[s]−1β̃, (A.20)

where s ≡ (s1, . . . , sq)′.

To study the large-sample properties, I consider the following assumptions. The as-
sumptions are standard in that it requires that each outcome’s standard deviation (suit-
ably defined depending on Assumption 2.2 and the method, e.g., on the full sample or
using the control sample) is positive, the ̂̃βn and ŝn are consistent, and that a suitable
central limit theorem can be applied.

Assumption A.5.

1. sj > 0 for each j = 1, . . . , q.

2. ̂̃βn
p−→ β̃ and ŝn

p−→ s.

3. Suppose that

√
n

(̂̃βn − β̃

ŝn − s

)
d−→
(
Zβ̃

Zs

)
≡ N

((
0q

0q

)
,

(
Ψβ̃ Ψ′

s,β̃

Ψs,β̃ Ψs

))
.

Under Assumption A.5, I have β̂n
p−→ β by the continuous mapping theorem and

using (A.20).

For the limiting distribution of β̂n, I have

√
n(β̂n − β) =

√
n(diag[ŝn]

−1 ̂̃βn − diag[s]−1β̃)

= diag[ŝn]
−1√n(̂̃βn − β̃) +

√
n(diag[ŝn]

−1 − diag[s]−1)β̃

= diag[ŝn]
−1√n(̂̃βn − β̃) + diag[ŝn]

−1 diag[s]−1 diag[β̃]
√

n(s− ŝn)

d−→ diag[s]−1Zβ̃ − diag[s]−2 diag[β̃]Zs

≡ diag[s]−1Zβ̃ −HZs
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∼ N(0q, Σβ̂), (A.21)

where the third line used

(
diag[ŝn]

−1 − diag[s]−1
)
β̃ =


(ŝ−1

n,1 − s−1
1 )β̃1

...
(ŝ−1

n,q − s−1
q )β̃q



=


s1−ŝn,1
ŝn,1s1

β̃1
...

sq−ŝn,q
ŝn,qsq

β̃q



= diag




β̃1
ŝn,1s1

...
β̃q

ŝn,qsq





s1 − ŝn,1
...

sq − ŝn,q

 ,

the fourth line used Slutsky’s theorem, the fifth line defined H ≡ diag[s]−2 diag[β̃], and
the last line defined

Σβ̂ ≡ diag[s]−1Ψβ̃ diag[s]−1 − diag[s]−1Ψ′
s,β̃H

′ −HΨs,β̃ diag[s]−1 +HΨsH
′. (A.22)

A.4.1 Precision analysis for PCA

To begin with, the analog of (A.18) using the nonstandardized outcomes Ỹi can be writ-
ten as

Ỹi = ξ̃+ β̃Di + Ũi, (A.23)

where β̃ ≡ (β̃1, . . . , β̃q)′, ξ̃ ≡ (ξ̃1, . . . , ξ̃q)′, and Ũi ≡ (Ũi,1, . . . , Ũi,q)
′. I show the analysis

on the above model in Appendix A.4.4 after presenting the main results.

Using the linear model (A.23) above and Assumption A.8, I have

Var[Ỹi] = β̃β̃′pD(1 − pD) + Var[Ũi]. (A.24)

Suppose that s = 1q and β̃ = 0q. Then, (A.22) becomes

Σβ̂ ≡ Ψβ̃. (A.25)
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Using the limiting distribution derived in Section A.4.4 without standardizing the out-
comes, I have

Ψβ̃ =
Var[DiŨi]

p2
D

+
Var[(1 − Di)Ũi]

(1 − pD)2 . (A.26)

Define ΣŨ,1 ≡ Var[Ũi|Di = 1] and ΣŨ,0 ≡ Var[Ũi|Di = 0]. Using Di is binary, I have

Var[DiŨi] = E[D2
i ŨiŨ

′
i ]− E[DiŨi]E[DiŨi]

′ = E[DiŨiŨ
′
i ] = pDΣŨ,1,

and

Var[(1 − Di)Ũi] = E[(1 − Di)
2ŨiŨ

′
i ]− 0q0

′
q = E[(1 − Di)ŨiŨ

′
i ] = (1 − pD)ΣŨ,0.

Under homoskedasticity so that ΣŨ,0 = ΣŨ,1 ≡ ΣŨ, I have

Σβ̂ = Ψβ̃

=
ΣŨ
pD

+
ΣŨ

1 − pD

=
1

pD(1 − pD)
ΣŨ

=
1

pD(1 − pD)
Var[Ỹi]

=
1

pD(1 − pD)
Var[Yi], (A.27)

where the first line uses (A.25), the second line uses the homoskedastic assumption, the
fourth line uses (A.24), and the last line uses s is the standard deviations of Yi, so it
is the same as correlation matrix. This shows that PCA is even trying to maximize the
asymptotic variance of β̂ instead of minimizing it because Σβ̂ is proportional to Var[Yi].

The assumptions that β̃ = 0q, s = 1q, and homoskedasticity are used to simplify
the analysis. Without such analysis, one has to consider the other covariance terms in
Assumption A.5. But the asymptotic variance (A.22) can be used to analyze the variance.

Next, I consider the heteroskedastic case. Here, (A.24) can be written as

ΣY = β̃β̃′pD(1 − pD) + ΣŨ = β̃β̃′pD(1 − pD) + pDΣŨ,1 + (1 − pD)ΣŨ,0. (A.28)
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On the other hand, (A.26) becomes
ΣŨ,1
pD

+
ΣŨ,0

1−pD
, so that (A.27) becomes

Σβ̂ = Ψβ̃ =
ΣŨ,1

pD
+

ΣŨ,0

1 − pD
(A.29)

under β = 0q and s = 1q.

Combining the above, I have

pD(1 − pD)Σβ̂ − ΣY = (1 − 2pD)ΣŨ,1 − (1 − 2pD)ΣŨ,0 − β̃β̃′pD(1 − pD).

If β̃ = 0q, then

pD(1 − pD)w
′Σβ̂w−w′ΣYw = (1 − 2pD)(w

′ΣŨ,1w−w′ΣŨ,0w). (A.30)

The difference between w′Σβ̂w and w′ΣYw now depends on pD, ΣŨ,1 and ΣŨ,0.

A.4.2 Precision analysis for IVM

The analysis in subsection A.4.1 can be used to analyze the IVM weights, although the
interpretations of the variables are different. This is because Anderson (2008) standard-
izes the outcomes using the control group’s standard deviations. Therefore, s represents
the standard deviation of the outcomes using the control sample and ŝn is the estimator
of s. The terms in (A.19) and (A.20) in this subsection are under this interpretation.

Under homoskedasticity, s = 1q, and β̃ = 0q, the analysis in (A.27) can be applied. It
provides a way to justify that minimizing w′ΣYw and w′Σβ̂w lead to the same solution
over w ∈ Wcvx.

Under heteroskedasticity, s = 1q, and β̃ = 0q, the analysis in (A.30) can be applied.
Since the RHS of (A.30) depends on w, minimizing w′ΣYw and w′Σβ̂w can lead to
different solutions. Nevertheless, when pD = 1

2 , both can still lead to the same solution.

In the following, I compare the IVM weights with the weights that maximize preci-
sion.

Proposition A.6. Let Assumption A.5 hold and Σβ̂ as defined in (A.22). Write wivm as in (12)
and wb ≡ arg minw∈Wsto

w′Σβ̂w. Assume that ΣY and Σβ̂ are positive definite matrices. Then,
wivm = wb if and only if Σ−1

Y 1q = κΣ−1
β̂

1q for some κ ̸= 0.

Proof of Proposition A.6. wivm has been given in (11). By a similar computation, wb =
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Σ−1
β̂

1q

1′qΣ−1
β̂

1q
. If wivm = wb, it means that

Σ−1
Y 1q =

1′qΣ−1
Y 1q

1′qΣ−1
β̂

1q

Σ−1
β̂

1q.

The scalar
1′qΣ−1

Y 1q

1′qΣ−1
β̂

1q
is well-defined and nonzero because ΣY and Σβ̂ are positive definite.

On the other hand, if Σ−1
Y 1q = κΣ−1

β̂
1q for some κ ̸= 0, then

wivm =
Σ−1

Y 1q

1′qΣ−1
Y 1q

=
κΣ−1

β̂
1q

κ1′qΣ−1
β̂

1q
=

Σ−1
β̂

1q

1′qΣ−1
β̂

1q
= wb.

Hence, the proof is complete.

A.4.3 Precision analysis for SA

The following proposition characterizes when SA maximizes precision. For the same
reason as in Section 3.3.1, I consider w ∈ Wsto.

Proposition A.7. Consider the same notations and assumptions as in Proposition A.6. Write
wsa as in Section 3.3. and wb ≡ arg minw∈Wsto

w′Σβ̂w. Assume that Σβ̂ is a positive definite
matrix. Then, wsa = wb if and only if 1q = κΣ−1

β̂
1q for some κ ̸= 0.

Proof of Proposition A.7. wb has been given in the proof of Proposition A.6. If wsa =

wb, it means that

1q = q
Σ−1
β̂

1q

1′qΣ−1
β̂

1q
.

The scalar q
1′qΣ−1

β̂
1q

is well-defined and nonzero because Σβ̂ is positive definite.

On the other hand, if 1q = κΣ−1
β̂

1q for some κ ̸= 0, then

wsa =
1
q
1q =

1
1′q1q

1q =
κΣ−1

β̂
1q

κ1′qΣ−1
β̂

1q
=

Σ−1
β̂

1q

1′qΣ−1
β̂

1q
= wb.

Hence, the proof is complete.
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A.4.4 Precision analysis without standardization

I assume that the following hold for the linear model (A.23).

Assumption A.8.

(a) pD ≡ P[Di = 1] ∈ (0, 1).

(b) E[Ũi|Di] = 0q.

(c) Var[Ũi] < ∞.

(d) Var[Ỹi] and Var[Ũi] are symmetric positive definite matrices with bounded eigenvalues.

In the above, (a) requires Di to have variation in data. Part (b) imposes the standard
independence assumption. Part (c) ensures that Var[Ỹi] is finite. Part (d) requires the
matrices to be positive definite.

Proof of equation (A.26). Consider the linear model (A.23). Note that from (A.23), the
estimator on the treatment effect for the jth outcome can be written as

̂̃βn,j =
1
n1

n

∑
i=1

Di(ξ̃ j + β̃ jDi + Ũi,j)−
1
n0

n

∑
i=1

(1 − Di)(ξ̃ j + β̃ jDi + Ũi,j)

= β̃ j +
1
n1

n

∑
i=1

DiŨi,j −
1
n0

n

∑
i=1

(1 − Di)Ũi,j,

for j = 1, . . . , q, where n1 ≡ ∑n
i=1 Di and n0 = ∑n

i=1(1 − Di).

I have ̂̃τn = w′ ̂̃βn by Lemma A.2. The estimator ̂̃τn for τ̃ defined in Example 3.5 can
be written as

̂̃τn =
q

∑
j=1

wj β̃ j +
q

∑
j=1

wj

[
1
n1

n

∑
i=1

DiŨi,j −
1
n0

n

∑
i=1

(1 − Di)Ũi,j

]

=
q

∑
j=1

wj β̃ j +
1
n1

n

∑
i=1

Di

q

∑
j=1

wjŨi,j −
1
n0

n

∑
i=1

(1 − Di)
q

∑
j=1

wjŨi,j. (A.31)

Using (A.31), recentering ̂̃τn around ∑
q
j=1 wj β̃ j and scaling by

√
n gives

√
n

(̂̃τn −
q

∑
j=1

wj β̃ j

)
=

n
n1

1√
n

n

∑
i=1

Di

q

∑
j=1

wjŨi,j −
n
n0

1√
n

n

∑
i=1

(1 − Di)
q

∑
j=1

wjŨi,j

=
(

n
n1

− n
n0

) 1√
n ∑n

i=1 Di ∑
q
j=1 wjŨi,j

1√
n ∑n

i=1(1 − Di)∑
q
j=1 wjŨi,j


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=
(

n
n1

− n
n0

) 1√
n ∑n

i=1 Di(w
′Ũi)

1√
n ∑n

i=1(1 − Di)(w
′Ũi)


d−→
(

1
pD

− 1
1−pD

)
N

((
0
0

)
,

(
ωU,1 ωU,10

ωU,10 ωU,0

))
, (A.32)

where the last line follows from the Slutsky’s theorem, the central limit theorem, As-
sumption A.8, and defined

ωU,1 ≡ Var[Di(w
′Ũi)] = w′ Var[DiŨi]w,

ωU,0 ≡ Var[(1 − Di)(w
′Ũi)] = w′ Var[(1 − Di)Ũi]w,

ωU,10 ≡ Cov[Di(w
′Ũi), (1 − Di)(w

′Ũi)] = 0,

where the computation of ω10 used Di(1−Di) = 0 since Di is binary and that E[Ũi|Di] =

0 from Assumption A.8(c).

It follows that the asymptotic variance in (A.32) can be written as

σ2
τ =

1
p2

D
ωU,1 +

1
(1 − pD)2 ωU,0 = w′

{
Var[DiŨi]

p2
D

+
Var[(1 − Di)Ũi]

(1 − pD)2

}
w.

A.5 Analysis on common aggregation methods and the t-statistic

A.5.1 Setup

This section begins by studying the t-statistic under the setup in Example 3.5. As in
Assumption 2.2 and Appendix A.4, the vector Yi represents the suitably standardized
outcomes and Ỹi represents the nonstandardized outcomes. The linear model for Ỹi is
given in (A.23) and the linear model for Yi is given in (A.18). Let ̂̃ξn and ̂̃βn be the
estimators of ξ̃ and β̃ respectively.

To analyze the t-statistic, I need to specify the linear model and the hypothesis. I
specialize the analysis to the following as in Example 3.5, where the outcome is w′Yi:

w′Yi = ξ + τDi + Ui, (A.33)

where Yi = ŜnỸi and Ŝn ≡ diag[ŝn]−1. In addition, I write S ≡ diag[s]−1. The above
equation is related to (A.18) by writing ξ = w′ξ, τ = w′β, and Ui = w′Ui. In the
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discussion below, the definitions of Ŝn and S depend on the method used (as described
by Assumption 2.2) as discussed in the main text.

Consider testing the following hypothesis

H0 : τ = 0 vs. H1 : τ ̸= 0. (A.34)

Let T̂n(w) be the sample t-statistic used to test the above hypothesis. Under the setup
in Example 3.5 with a binary treatment and homoskedastic errors, the t-statistic squared
can be written as

[T̂n(w)]2 ≡ (n − 2)
R̂2

n(w)

1 − R̂2
n(w)

, (A.35)

where R̂2
n(w) is the sample analog of the population R-squared (Wooldridge, 2013, equa-

tion (4.41)). The t-statistic and R-squared are functions of w because the outcome in
(A.33) depends on w.

A.5.2 Comparison with PCA, SA, and IVM

The following proposition shows that the t-statistic squared is maximized by the PC1 of
ΣY under a specific condition. Since (A.35) has a factor of n in the expression, I consider
the following ratio of t-statistic for a fixed w0 to have a well-defined probability limit:

Υ(w;w0) ≡ plim
n→∞

[T̂n(w)]2

[T̂n(w0)]2
=

R2(w)

1 − R2(w)

1
R2(w0)

1−R2(w0)

. (A.36)

Proposition A.9. Let Assumptions 3.1, A.5, and A.8 hold. Suppose that β ̸= 0q. Con-
sider testing (A.34) in the linear model (A.33). Let Υ(w;w0) be the ratio defined in (A.36)
for any w0 ∈ Rq such that ∥w0∥2 = 1 and R2(w0) ∈ (0, 1). Then, the PC1 of ΣY solves

max
w:∥w∥2=1

Υ(w;w0) if and only if it is parallel to β.

In the above, choosing w0 such that R2(w0) ̸= 1 is to ensure the ratio R2(w0)
1−R2(w0)

in
(A.36) is well-defined in the probability limit. Proposition A.9 implies that finding the
weights w to maximize the square of t-statistic depends on both β and ΣY. This can
be seen from the one-to-one relationship between [T̂n(w)]2 and R̂2

n(w) in (A.35) such
that maximizing t-statistic squared is the same as maximizing R-squared. In the binary
treatment case, R-squared is maximized if the means of w′Yi for the Di = 1 and Di = 0
populations are as separate as possible. Thus, this means that β matters because a larger
(w′β)2 increases separation.
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Figure A.1: A two-outcome numerical example that evaluates the R-squared of PCA.

(a) DGP 1.
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(b) DGP 2.
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Notes: The above plots the R-squared of the aggregated treatment effect against w1. See Example
A.10 for the data generating process. The vertical dashed lines represent the choice made by
running PCA on the outcomes in both DGPs.

Example A.10. This numerical example demonstrates Proposition A.9 and shows that
PCA can maximize or minimize the t-statistic squared (or equivalently, the R-squared).

Following the same notations in Example 3.5, consider the following DGPs:

DGP 1. Same DGP as Example 3.5, i.e., Var[Yi,1] = Var[Yi,2] = 1, β1 = β2 = 0.5,
pD = 0.1, and Cov[Yi,1, Yi,2] = −0.6.

DGP 2. Same as DGP 1, except that Cov[Yi,1, Yi,2] = 0.6.

Figure A.1 shows the (population) R-squared when w1Yi,1 + w2Yi,2 is used as the out-
come. As noted in (A.35), there is a one-to-one relationship between t-statistic squared
and R-squared. PCA chooses a different w1 under the two DGPs because the lead-
ing eigenvector is determined by Cov[Yi,1, Yi,2] and the two DGPs differ by the sign
of Cov[Yi,1, Yi,2]. The PC1 is ( 1√

2
, 1√

2
) when Cov[Yi,1, Yi,2] > 0 and (− 1√

2
, 1√

2
) when

Cov[Yi,1, Yi,2] < 0.

Thus, PCA can maximize or minimize the t-statistic (or equivalently, the R-squared)
under the DGPs. △

Remark A.11. Maximizing R2(w) (or t-statistic squared in the homoskedastic case) is
related to linear discriminant analysis (LDA). LDA is a technique that classifies observa-
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tions into different groups using a linear combination of the features (see, for instance,
Hastie et al. (2009) or Mardia et al. (2024)). This is related to the context of aggregating
treatment effects when Yi is viewed as “features” and Di is viewed as “labels.” Then,
R2(w) is related to Fisher’s linear discriminant (with the caveat on the difference in the
definitions of the variance matrices in both quantities). The connection and similarity
of LDA and R2(w) highlights the importance of using Di if one wants to maximize t-
statistic (improves power). Here, running PCA on Yi is like unsupervised learning, and
maximizing t-statistic is like supervised learning. ■

Studying when the IVM and SA weights maximize (A.36) can be analyzed in a manner
similar to the PCA approach. The result is summarized in the propositions as follows.
Similar to the PCA results, they show that IVM and SA do not automatically maximize
the t-statistic squared. The assumption 1′qΣ−1

Y β ̸= 0 is used below to assume a nonzero
denominator.

Proposition A.12. Let Assumptions A.5 and A.8 hold. Suppose that β ̸= 0q and 1′qΣ−1
Y β ̸= 0.

Consider testing (A.34) in the linear model (A.33). Let Υ(w;w0) be the ratio defined in (A.36)
for any w0 ∈ Wsto and R2(w0) ∈ (0, 1). Then, wivm solves max

w∈Wsto
Υ(w;w0) if and only if β

is parallel to 1q.

Proposition A.13. Consider the same assumptions, the testing problem, and the ratio Υ(w;w0)

as in Proposition A.12. Then, wsa solves max
w∈Wsto

Υ(w;w0) if and only if it is parallel to Σ−1
Y β.

A.5.3 Proofs

Lemma A.14. Let Assumptions A.5 and A.8 hold. Consider the linear model (A.33). Let R̂2
n(w)

be as defined in (A.35). For any w ̸= 0q,

R̂2
n(w)

p−→ R2(w) ≡ Var[Di](w
′β)2

w′ΣYw
.

Proof of Lemma A.14. Let yn(w) ≡ 1
n ∑n

i=1 w
′Yi be the average of the weighted out-

comes, T̂SSn(w) ≡ ∑n
i=1(w

′Yi − yn(w))2 be the total sum of squares, and ÊSSn(w) ≡
∑n

i=1(ξ̂n + τ̂nDi − yn(w))2 be the explained sum of squares where ξ̂n is the estimator of
ξ. Hence,

R̂2
n(w) =

ÊSSn(w)

T̂SSn(w)
.

But from the linear model, ξ̂n + τ̂nDi = yn(w)− τ̂nDn + τ̂nDi = yn(w) + τ̂n(Di − Dn)
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where Dn ≡ 1
n ∑n

i=1 Di. Hence, ÊSSn(w) = τ̂2
n ∑n

i=1(Di − Dn)2. Note that

τ̂n =
∑n

i=1(Di − Dn)(w′Yi − yn(w))

∑n
i=1(Di − Dn)2

.

This gives

R̂2
n(w) ≡ [∑n

i=1(Di − Dn)(w′Yi − yn(w))]2

[∑n
i=1(Di − Dn)2]T̂SSn(w)

. (A.37)

Using the notations defined in the beginning of Section A.5, I can write Ỹ n ≡ 1
n ∑n

i=1 Ỹi,
yn(w) = w′Ŝn(

1
n ∑n

i=1 Ỹi) = w′ŜnỸ n,

T̂SSn(w) ≡
n

∑
i=1

(w′ŜnỸi − yn(w))2 = w′Ŝn

[
n

∑
i=1

(Ỹi − Ỹ n)(Ỹi − Ỹ n)
′
]
Ŝ
′
nw, (A.38)

and
n

∑
i=1

(Di − Dn)(w
′ŜnỸi − yn(w)) = w′Ŝn

n

∑
i=1

(Di − Dn)(Ỹi − Ỹ n). (A.39)

Let Bn,Ỹ ≡ ∑n
i=1(Ỹi − Ỹ n)(Ỹi − Ỹ n)′, Bn,Ỹ ,D ≡ ∑n

i=1(Di − Dn)(Ỹi − Ỹ n), and Bn,D ≡
∑n

i=1(Di − Dn)2. Together with (A.37) to (A.39),

R̂2
n(w) =

w′ŜnBn,Ỹ ,DB
′
n,Ỹ ,D

Ŝnw

Bn,D(w′ŜnBn,Ỹ Ŝnw)
. (A.40)

Under the given assumptions of this lemma, I have Ŝn
p−→ S, 1

n Bn,D
p−→ Var[Di],

1
nBn,Ỹ

p−→ Var[Ỹi], and 1
nBn,Ỹ ,D

p−→ Cov[Di, Ỹi] = β̃ Var[Di] by the continuous map-
ping theorem. Dividing the numerator and denominator of (A.40) by n2, I have

R̂2
n(w)

p−→ Var[Di]
2w′Sβ̃β̃S′w

Var[Di](w′SVar[Ỹi]Sw)
=

Var[Di](w
′β)2

w′ΣYw
(A.41)

by (A.20), continuous mapping theorem, and by the definition of ΣY.

Proposition A.15. Let Assumptions 3.1, A.5 and A.8 hold. In addition, suppose β ̸= 0q.
Consider the linear model in (A.33) and the R2(w) defined in Lemma A.14.

(a) The optimal solution to
max

w:∥w∥2
2=1

R2(w)
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is given by ±wR, where

wR ≡
Σ−1

Y β√
β′Σ−2

Y β
.

(b) wR = ±ν1 if and only if ν1 is parallel to β, where ν1 is the unit-length leading eigenvector
of ΣY defined in the beginning of Section 3.1.1.

Proof of Proposition A.15(a). Write σ2
D ≡ Var[Di], then by Lemma A.14:

R2(w) = σ2
D
w′(ββ′)w

w′ΣYw
. (A.42)

The above is a generalized Rayleigh quotient and is homogeneous of degree 0. Since
pD ∈ (0, 1) from Assumption A.8, it follows that σ2

D = pD(1 − pD) > 0. It is equivalent
to a generalized eigenvalue problem, and the optimal solution satisfies (Ghojogh et al.,
2023, Section 4.3):

[Σ−1
Y (ββ′)]w = λw, (A.43)

because ΣY is invertible and that β ̸= 0q as assumed in the proposition. This amounts
to finding the leading eigenvector of the matrix Σ−1

Y (ββ′).

Now returning to (A.43), suppose that λ ̸= 0. This means w is parallel to Σ−1
Y β

because β′w is a scalar. Let w = tΣ−1
Y β for some nonzero t ∈ R. Since w is restricted

to have unit length, this means t2β′Σ−2
Y β = ∥w∥2

2 = 1. Thus, t = ±(β′Σ−2
Y β)−

1
2 . Note

that t ̸= 0 because β′Σ−2
Y β = ∥Σ−1

Y β∥2
2 and by positive definiteness of ΣY, Σ−1

Y β ̸= 0q.
This means β′Σ−2

Y β > 0. Recall that the generalized Rayleigh quotient is homogeneous

of degree 0. Therefore, w⋆ = ± Σ−1
Y β√

β′Σ−2
Y β

.

Since w is assumed to have unit length, multiplying w′ on both sides of (A.43) gives

λ = w′[Σ−1
Y (ββ′)]w.

Evaluating the above at w = w⋆ gives the corresponding eigenvalue λ⋆ ≡ β′Σ−1
Y β. Note

that λ⋆ > 0 because β is a nonzero vector by the hypothesis of this proposition and ΣY

is positive definite by Assumptions A.5 and A.8(d). Therefore, the eigenvalue associated
with the eigenvector w⋆ is positive.

Note that Σ−1
Y (ββ′) has rank 1. This follows by first noting that ΣY is a full rank

matrix by Assumptions A.5 and A.8(d) and ββ′ has rank 1. The rank of Σ−1
Y (ββ′) is
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bounded above by the following inequality (Meyer, 2023, Chapter 4):

rank[Σ−1
Y (ββ′)] ≤ min{rank[Σ−1

Y ], rank[ββ′]} = 1. (A.44)

Since β ̸= 0q is assumed in the proposition, Σ−1
Y β ̸= 0q because Σ−1

Y has full rank.
Therefore, Σ−1

Y (ββ′) cannot be a zero matrix and hence, it cannot have rank 0. It follows
that rank[Σ−1

Y (ββ′)] = 1 by (A.44), so it can have at most one positive eigenvalue. But a
positive eigenvalue has been found above, so λ⋆ is the largest eigenvalue.

Proof of Proposition A.15(b). First, assume that wR = ±ν1. Using Proposition A.15(a),

I have β = ±
√

β′Σ−2
Y βΣYν1. This holds because β′Σ−2

Y β > 0 as discussed in the proof
of Proposition A.15(a) and ΣY is a full rank matrix by Assumptions A.5 and A.8(d). But
ΣYν1 = λ1ν1 because (λ1,ν1) is an eigenpair of ΣY (using the notations defined in the
beginning of Section 3.1.1). It follows that

β = ±
√

β′Σ−2
Y βΣYν1 = ±λ

√
β′Σ−2

Y βν1,

which means β is parallel to ν1 because λ
√

β′Σ−2
Y β is a scalar.

Conversely, assume that β is parallel to ν1. This means β = tν1 for some t ∈ R\{0}.
Using Proposition A.15(a),

wR =
Σ−1

Y β√
β′Σ−2

Y β

=
Σ−1

Y (tν1)√
(tν1)′Σ

−2
Y (tν1)

=
tλ−1

1 ν1√
t2λ−2

1 ν ′
1ν1

=
tλ−1

1 ν1√
t2λ−2

1

= ±ν1.

In the above, the second equality follows from β = tν1. The third equality uses that
(ν1, λ1) is an eigenpair of ΣY so (ν1, λ−1

1 ) is also an eigenpair of Σ−1
Y because ΣY is pos-
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itive definite by Assumptions A.5 and A.8(d), so it is invertible and λ1 > 0. The fourth
equality uses ν1 is a unit-length eigenvector as assumed in the beginning of Section
3.1.1.

Proposition A.16. Let Assumptions 3.1, A.5 and A.8 hold. Consider the linear model in (A.33)
and the problem of testing (A.34) using (A.35). For any w0 ∈ Rq such that ∥w0∥2 = 1 and
R2(w0) ̸= 1, the solution to the following problem

max
w:∥w∥2=1

plim
n→∞

[T̂n(w)]2

[T̂n(w0)]2
.

is given by ±wR.

Proof of Proposition A.16. To begin with, note that R̂2
n(w) is the sample analog of R2(w).

For any w ∈ Rq such that ∥w∥2
2 = 1, R̂2

n(w)
p−→ R2(w) holds by Lemma A.14. Next, for

any w,w0 ∈ Rq such that ∥w∥2 = ∥w0∥2 = 1, I have

[T̂n(w)]2

[T̂n(w0)]2
=

R̂2
n(w)

1−R̂2
n(w)

R̂2
n(w0)

1−R̂2
n(w0)

p−→
R2(w)

1−R2(w)

R2(w0)
1−R2(w0)

, (A.45)

by Lemma A.14, the continuous mapping theorem and the definition of [T̂n(w)]2 in
(A.35).

Fixing w0 as in the statement of the proposition, the probability limit in (A.45) is an
increasing function in R2(w) for R2(w) ∈ [0, 1). This follows because

d( x
1−x )

dx = 1
(1−x)2 > 0

for any x ̸= 1. Hence, the probability limit of (A.45) is maximized when R2(w) is
maximized. This optimal weight w is given by w⋆ from Proposition A.15(a).

Proof of Proposition A.9. The result follows from Propositions A.15 and A.16.

Proof of Proposition A.12. Following the proof to Proposition A.15(a), the optimal w

that maximizes R2(w) is parallel to Σ−1
Y β. Since R2(w) is homogeneous of degree 0, the

optimal solution is wI ≡
Σ−1

Y β

1′qΣ−1
Y β

by the given assumptions of the proposition.

Suppose β is parallel to 1q, i.e., β = t1q for some t ∈ R\{0}. Thus,

wI =
tΣ−1

Y 1q

t1′qΣ−1
Y 1q

= wivm.
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Next, suppose wI = wivm. This means

Σ−1
Y β

1′qΣ−1
Y β

=
Σ−1

Y 1q

1′qΣ−1
Y 1q

,

or equivalently, β =
1′qΣ−1

Y β

1′qΣ−1
Y 1q

1q, because ΣY is invertible and 1′qΣ−1
Y β ̸= 0, i.e., β is parallel

to 1q.

Proof of Proposition A.13. The expression for wI has been derived in the proof of Propo-
sition A.12. Suppose wsa is parallel to Σ−1

Y β, then tΣ−1
Y β = wsa = 1

q1q for some
t ∈ R\{0}. Thus,

wI =
Σ−1

Y β

1′qΣ−1
Y β

=

1
tq1q

1
tq1

′
q1q

=
1
q
1q = wsa.

Next, suppose wI = wsa. This means

Σ−1
Y β

1′qΣ−1
Y β

=
1
q
1q = wsa,

i.e., wsa is parallel to Σ−1
Y β.

A.5.4 Extensions

The analysis at the beginning of this section has assumed that there are no covariates to
follow Example 3.5, and for exposition purposes. The analysis has shown that each of
the methods does not necessarily maximize the t-statistic squared. In this subsection, I
discuss various extensions to the earlier analysis and to show that the similar intuition
and conclusion continue to apply with appropriate adjustments.

First, a similar analysis can be performed when covariates are included using the FWL
theorem by replacing the outcome and Di with the residualized variables and adjusting
for the degrees of freedom in the t-statistic to account for the number of covariates.

Second, where homoskedasticity is not assumed, the t-statistic squared does not have
the representation in terms of R̂2

n(w). Nevertheless, the t-statistic can still be analyzed
under Assumption A.5. In particular, testing (A.34) can be performed by the test statistic
T̂n(w) =

√
n(w′β̂n)√
w′Σ̂n,β̂w

where Σ̂n,β̂ is a consistent estimator of Σβ̂. In this case, one can

conduct a similar analysis as in Section A.5.2 by considering a suitable w0 and the ratio
[T̂n(w)]2

[T̂n(w0)]2
where w and w0 are in the corresponding class of weights that are suitable PCA,
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SA, or IVM. For a fixed w0, the ratio can still be analyzed via the Rayleigh quotient in w

below
w′(ββ′)w

w′Σβ̂w
. (A.46)

Thus, the analysis in Section A.5.2 can still be applied by redefining the matrices and
corresponding assumption appropriately and the weights would be required to parallel
to Σ−1

β̂
β to maximize the quotient.

Finally, the analysis can be used to study the probability of rejection. Let cv ∈ R

be a given critical value that depends on the significance level. Then, P[|T̂n(w)| >

cv] = P[|
√

n(w′β̂n−w′β)√
w′Σ̂n,β̂w

+
√

n(w′β)√
w′Σ̂n,β̂w

| > cv]. To proceed, one could consider the local

alternative where β = n−1/2b and b ∈ Rq to ensure that
√

n(w′β) is finite. Thus,
this converges to P[|Z + w′b√

w′Σ
β̂
w
| > cv], where Z ∼ N(0, 1) by Assumption A.5 and

Slutsky’s theorem. This is the same as evaluating the probability of a folded normal
distribution |N( w′b√

w′Σ
β̂
w

, 1)| and is increasing in the Rayleigh quotient w′bb′w
w′Σ

β̂
w . Hence,

the earlier analysis in Section A.5.2 and the previous paragraph can again be applied to
show what choice of w maximizes the probability of rejection. In this case, the Rayleigh
quotient (A.46) can be used but with β replaced by b and the statements have to be
updated accordingly.

A.6 An example with duplicated outcomes

In this subsection, I consider a stylized example with duplicated outcomes and show that
SA can lead to overcounting. This does not suggest that researchers include duplicated
outcomes in practice. The stylized example tries to model the limiting case where some
highly correlated outcomes are included in the index.

Example A.17 (Duplicated outcomes and simple averaging). Consider the setting de-
scribed by Example 3.5. Let Yi,1 and Yi,2 be two independent outcomes with Var[Yi,1] =

Var[Yi,2] = 1. Set Yi,2 = · · · = Yi,q (i.e., outcomes 2 to q are duplicated copies). In
addition, assume that treatment effects are homogeneous β1 = · · · = βq = β and the
errors are homoskedastic. In this case, it seems unreasonable to assign equal weights to
all outcomes. This is because the second treatment effect is effectively weighted by q−1

q
and the first treatment effect is weighted by 1

q , but both has the same effect β and unit
variance.

On the other hand, the variance-minimizing solution to w′Σβ̂w subject to w ∈ Wcvx
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(i.e., the class of convex weights as defined in (2)) is{
(w⋆

1 , w⋆
2 , . . . , w⋆

q) : w⋆
1 =

1
2

,
q

∑
j=2

w⋆
j =

1
2

, w⋆
j ≥ 0 for j = 2, . . . , q

}
. (A.47)

Since Σβ̂ is positive semidefinite, the solution is not unique. But this is as expected
because Yi,2, . . . , Yi,q are all the same, so only the sum of weights on these (q− 1) random
variables matters. (A.47) shows that computing the weights using Σβ̂ is helpful and leads
to more reasonable weights. The proof for (A.47) can be found below. △

Proof of equation (A.47). Following the notations in Example 3.5, write the error term
as Ui = (Ui,1, Ui,2, . . . , Ui,2)

′ where Ui,2 is repeated for (q− 1) times. Let σ2
1,j ≡ Var[DiUi,j]

and σ2
0,j ≡ Var[(1 − Di)Ui,j] for j = 1, 2. Then,

Var[DiUi] = Var




DiUi,1

DiUi,2
...

DiUi,q


 = Var




DiUi,1

DiUi,2
...

DiUi,q


 =

(
σ2

1,1 0′q−1

0q−1 σ2
1,21(q−1)×(q−1)

)
,

and similarly,

Var[(1 − Di)Ui] = Var



(1 − Di)Ui,1

(1 − Di)Ui,2
...

(1 − Di)Ui,q


 =

(
σ2

0,1 0′q−1

0q−1 σ2
0,21(q−1)×(q−1)

)
.

Thus, the asymptotic variance of β̂ is

Σβ̂ =
Var[DiUi]

p2
D

+
Var[(1 − Di)Ui]

(1 − pD)2

=
1

p2
D

(
σ2

1,1 0′q−1

0q−1 σ2
1,21(q−1)×(q−1)

)
+

1
(1 − pD)2

(
σ2

0,1 0′q−1

0q−1 σ2
0,21(q−1)×(q−1)

)

=

 ς2
1,β̂

0′q−1

0q−1 ς2
2,β̂

1(q−1)×(q−1)

 ,
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where

ς2
j,β̂ ≡

σ2
1,j

p2
D
+

σ2
0,j

(1 − pD)2 ,

for j = 1, 2.

Therefore,

w′Σβ̂w = ς2
1,β̂

w2
1 + ς2

2,β̂

(
q

∑
j=2

wj

)2

= ς2
1,β̂

w2
1 + ς2

2,β̂
(1 − w1)

2, (A.48)

where the last equality follows because w′1q = 1 as w ∈ Wcvx. The first-order condition
of the above is

2ς2
1,β̂

w1 − 2(1 − w1)ς
2
2,β̂

= 0,

or equivalently,

w1 =
ς2

2,β̂

ς2
1,β̂

+ ς2
2,β̂

. (A.49)

This leads to the optimal solution that minimizes (A.48).

In the example, I assumed that β j = β for any j = 1, . . . , q, and that errors are
homoskedastic. Since Yi,j = ξ j + βDi + Ui,j and Var[Yi,j] = 1 for any j = 1, . . . , q, this

means 1 = Var[Yi,j] = β
2

Var[Di] + Var[Ui,j], or equivalently,

Var[Ui,j] = 1 − β
2pD(1 − pD), (A.50)

for j = 1, . . . , q. Hence,

σ2
1,j = E[D2

i U2
i,j]− E[DiUi,j]

2 = E[D2
i ]E[U2

i,j] = pD[1 − β
2pD(1 − pD)]

and
σ2

0,j = E[(1 − Di)
2U2

i,j]− E[(1 − Di)Ui,j]
2 = (1 − pD)[1 − β

2pD(1 − pD)].

for j = 1, . . . , q. As a result, this implies that ς2
1,β̂

= ς2
2,β̂

. It follows from (A.49) that

w⋆
1 = 1

2 and ∑
q
j=2 w⋆

j = 1
2 .
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A.7 Additional details on inference for generated outcomes

This subsection shows the limiting distribution when one studies generated outcomes.
Recall that it has been assumed throughout the appendix that {(Di,X ′

i ,Y
′

i )}n
i=1 are i.i.d.

across i. In addition, I use Assumption A.1 in the next two subsections. This assump-
tion characterizes the limiting distribution of β̂n and Ω. Note that the standardization
step has been included in β̂n as discussed in the previous section on precision (see, for
instance, (A.22)). Hence, the asymptotic variance matrix in Assumption A.1 has already
accounted for the correct calculation for the variance matrices that account for the stan-
dardization step as in Assumption 2.2.

A.7.1 Inference for PCA

Lemma A.18. Let Assumptions 3.1 hold on Ω and A.1 hold. Write {(νj, λj)}
q
j=1 as the

eigenpairs of Ω such that {νj}
q
j=1 are unit-length eigenvectors and λ1 ≥ · · · ≥ λq. Let

ŵpca,n = arg maxw∈Wunit
w′Ω̂nw where Wunit is as defined in (5). Suppose c′wpca > 0.

Then, ŵpca,n
p−→ wpca.

Proof of Lemma A.18. By Assumption 3.1, ŵ′
pca,nΩ̂nŵpca,n = supw∈Wunit

w′Ω̂nw because
the leading eigenvalue is unique. In addition, for any w ∈ Wunit, |w′Ω̂nw −wΩw| ≤
∥Ω̂n − Ω∥∥w∥2

2. Hence, supw∈Wunit
|w′Ω̂nw−w′Ωw| p−→ 0 by Assumption A.1. There-

fore, ŵpca,n
p−→ wpca by Theorem 2.12(i) of Kosorok (2008).

Proposition A.19. Consider the same assumptions as in Lemma A.18. Write τ̂n ≡ ŵ′
pca,nβ̂n

and τ ≡ w′
pcaβ. Then,

√
n(τ̂n − τ)

d−→ N(0,w′
pcaΣwpca + 2w′

pcaΨ′
Ω,βB

′
νβ+ β′BνΨΩB′

νβ),

where Bν ≡ ∑
q
j=2 νj

vec[νjν
′
1]
′D

λ1−λj
, D is the duplication matrix such that Dvech[Ω] = vec[Ω], and

{(νj, λj)}
q
j=1 are the eigenpairs of Ω such that c′νj ≥ 0 for j = 1, . . . , q.

Proof of Proposition A.19. Let τ̂n and τ be as defined in the statement of the proposition.
Then,

√
n(τ̂n − τ) =

√
n(ŵ′

pca,nβ̂n −w′
pcaβ)

=
√

n(ŵ′
pca,nβ̂n − ŵ′

pca,nβ+ ŵ′
pca,nβ−w′

pcaβ)

= ŵ′
pca,n[

√
n(β̂n − β)] + β′[

√
n(ŵpca,n −wpca)]
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=
(
ŵ′

pca,n β′
)( √

n(β̂n − β)
√

n(ŵpca,n −wpca)

)

=
(
w′

pca β′
) √

n(β̂n − β)
√

n ∑
q
j=2

ν ′
j (Ω̂n−Ω)ν1

λ1−λj
νj

+ oP(1)

=
(
w′

pca β′
) √

n(β̂n − β)
√

n ∑
q
j=2

vec[νjν
′
1]
′ vec[Ω̂n−Ω]

λ1−λj
νj

+ oP(1)

=
(
w′

pca β′
)Iq 0

0 ∑
q
j=2 νj

vec[νjν
′
1]
′D

λ1−λj

( √
n(β̂n − β)

√
n[vech(Ω̂n − Ω)]

)
+ oP(1)

≡
(
w′

pca β′
)(Iq 0

0 Bν

)( √
n(β̂n − β)

√
n[vech(Ω̂n − Ω)]

)
+ oP(1)

d−→
(
w′

pca β′Bν

)( Zβ

Zvech[Ω]

)
∼ N(0,w′

pcaΣwpca + 2w′
pcaΨ′

Ω,βB
′
νβ+ β′BνΨΩB′

νβ),

where the first line uses the definition of the estimators, the second line adds and sub-
tracts, the fifth line uses Lemma A.18 and uses eigenvector perturbation (see, for in-
stance, Stewart (2001, Theorem 3.11 of Chapter 1)), the seventh line defines Bν as in the
statement of the proposition, the eighth and last lines use the notations in Assumption
A.1.

A.7.2 Inference for IVM

Lemma A.20. Let Σ be a positive definite matrix. Define a(Σ) ≡ Σ−11q

1′qΣ−11q
. Then,

da(Σ)
d vec[Σ]

=
−(1′qΣ−1)⊗ Σ−1(1′qΣ−11q) + (Σ−11q)[(1′qΣ−1)⊗ (1′qΣ−1)]

(1′qΣ−11q)2
.

Proof of Lemma A.20. By matrix derivative equalities (see, for instance, Example 18.8a
of Magnus and Neudecker (2019)),

d(Σ−11q) = d(IqΣ−11q) = −Σ−1(dΣ)Σ−11q, (A.51)

d(1′qΣ−11q) = −1′qΣ−1(dΣ)Σ−11q. (A.52)

Since Σ−11q is a column vector and 1′qΣ−11q is a scalar, I have vec[Σ−11q] = Σ−11q and
vec[1′qΣ−11q] = 1′qΣ−11q.
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Thus, (A.51) and (A.52) can be written as

d(Σ−11q) = − vec[IqΣ−1(dΣ)Σ−11q] = −
[
(1′qΣ−1)⊗ Σ−1

]
vec[dΣ], (A.53)

d(1′qΣ−11q) = − vec[1′qΣ−1(dΣ)Σ−11q] = −
[
(1′qΣ−1)⊗ (1′qΣ−1)

]
vec[dΣ], (A.54)

using properties on the Kronecker product (see, for instance, Example 18.5 of Magnus
and Neudecker (2019)). It follows that

d(Σ−11q)

d vec[Σ]
= −(1′qΣ−1)⊗ Σ−1, (A.55)

d(1′qΣ−11q)

d vec[Σ]
= −(1′qΣ−1)⊗ (1′qΣ−1). (A.56)

Hence, the gradient of a(Σ) with respect to vec[Σ] is given by

da(Σ)
d vec[Σ]

=
−(1′qΣ−1)⊗ Σ−1(1′qΣ−11q) + (Σ−11q)[(1′qΣ−1)⊗ (1′qΣ−1)]

(1′qΣ−11q)2
,

using the chain rule, (A.55) and (A.56). Since Σ is positive definite, 1′qΣ−11q > 0 in the
above derivative.

The following shows the limiting distribution of the aggregated treatment effect using
ŵivm,n.

Proposition A.21. Let Assumption A.1 hold and Ω is positive definite. Let wivm be as defined

in (11) and ŵivm,n ≡ Ω̂
−1
n 1q

1′qΩ̂
−1
n 1q

. Define τ̂ivm,n ≡ ŵ′
ivm,nβ̂n, and τivm ≡ w′

ivmβ. Then,

√
n(τ̂ivm,n − τivm)

d−→ N(0, σ2
ivm),

where
σ2

ivm ≡ w′
ivmΣwivm + 2w′

ivmΨ′
Ω,βD

′
aβ+ β′DaΨΩD′

aβ.

Proof of Proposition A.21. To begin with, write a(Ω) ≡ Ω−11q

1′qΩ−11q
where Ω is a positive

definite matrix. The expression da(Ω)
d vec[Ω]

is given in Lemma A.20. Since Ω is positive

definite, 1′qΩ−11q > 0.

Let G ≡ da(Ω)
d vec[Ω]

and D be the duplication matrix such that vec[Ω̂n −Ω] = Dvech[Ω̂n −
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Ω]. Hence, using the Delta method,

√
n[a(Ω̂n)− a(Ω)] = Da

√
n vech[Ω̂n − Ω] + oP(1), (A.57)

where Da ≡ GD. Hence,

√
n(τ̂ivm,n − τivm) =

√
n[a(Ω̂n)

′β̂n − a(Ω)′β]

=
√

n[a(Ω̂n)
′β̂n − a(Ω̂n)

′β+ a(Ω̂n)
′β− a(Ω)′β]

=
(
a(Ω̂n)′ β′

)( √
n(β̂n − β)

√
n[a(Ω̂n)− a(Ω)]

)
d−→
(
a(Ω)′ β′

)( Zβ

DaZvech[Ω]

)

=
(
w′

ivm β′
)( Zβ

DaZvech[Ω]

)
∼ N(0, σ2

ivm),

where the first line follows from the definition of a(·) and the estimators, the second
line follows from adding and subtracting, the fourth line follows from (A.57) and that
a(Ω̂n)

p−→ a(Ω) by the continuous mapping theorem and the given assumptions, the
fifth line follows from Assumption A.1, and the last line follows from defining

σ2
ivm ≡

(
w′

ivm β′Da

)( Σ Ψ′
Ω,β

ΨΩ,β ΨΩ

)(
wivm

D′
aβ

)
= w′

ivmΣwivm + 2w′
ivmΨ′

Ω,βD
′
aβ+ β′DaΨΩD′

aβ.

A.7.3 General result

This subsection concludes with a general result that shows one has to account for the
“generated outcome” in computing the correct standard error.

Assumption A.22. Suppose ŵn ∈ Rq and β̂n ∈ Rq have the following representation:

√
n(ŵn −w0) =

1√
n

n

∑
i=1

φw(Di,Xi,Yi) + oP(1),
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√
n(β̂n − β) =

1√
n

n

∑
i=1

φβ(Di,Xi,Yi) + oP(1).

where φ(Di,Xi,Yi) ≡ (φw(Di,Xi,Yi)
′,φβ(Di,Xi,Yi)

′)′ is the corresponding influence func-
tion such that E[φ(Di,Xi,Yi)] = 02q and E[φ(Di,Xi,Yi)φ(Di,Xi,Yi)

′] exists.

The above assumption allows the definition of the estimator to be general to allow
for flexible choices. This is because researchers may choose to divide outcomes from the
outcomes’ standard deviation using the full sample or control subsample depending on
how they want to interpret effect size. Under Assumption 2.2, β and β̂n are the treatment
effects on the (suitably) standardized outcomes. Hence, the terms in Assumption A.22
have taken the standardization into account and the influence function has been adjusted
for the estimated weights. See Example A.24 below for a binary treatment example. The
proposition below shows that one has to take the generated outcome using the data-
dependent weights into account in conducting inference unless the additional variance
terms equal 0. This generated outcome issue is related to the literature on generated
regressors studied since Pagan (1984) and Murphy and Topel (1985) although I focus
on the dependent variable. This is also related to conducting inference on generated
variables from unstructured data studied by Battaglia et al. (2024) in which they discuss
how variables are generated and used as regressors via a “two-step approach.”

Proposition A.23. Let Assumption A.22 hold. Write τ̂n ≡ ŵ′
nβ̂n and τ ≡ w′

0β. Then,

√
n(ŵ′

nβ̂n −w′
0β)

d−→ N(0, σ2
τ),

where

σ2
τ ≡ σ2

τ,β + 2σ2
τ,β,w + σ2

τ,w,

σ2
τ,β ≡ w′

0 Var[φβ(Di,Xi,Yi)]w0, σ2
τ,β,w ≡ w′

0 Cov[φw(Di,Xi,Yi),φβ(Di,Xi,Yi)]β, and
σ2

τ,w ≡ β′ Var[φw(Di,Xi,Yi)]β.

The above proposition shows that the uncertainty in the weights also contribute to
the asymptotic variance and should not be treated as “fixed.”

Proof of Proposition A.23. Using the notations in Assumption A.22, I can write

√
n(τ̂n − τ) =

√
n(ŵ′

nβ̂n −w′
0β)

=
√

n(ŵ′
nβ̂n − ŵ′

nβ+ ŵ′
nβ−w′

0β)
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= ŵ′
n
√

n(β̂n − β) + β′√n(ŵn −w0)

=
(
ŵ′

n β′
)( √

n(β̂n − β)
√

n(ŵn −w0)

)

=
(
w′

0 + oP(1) β′
) 1√

n ∑n
i=1 φβ(Di,Xi,Yi) + oP(1)

1√
n ∑n

i=1 φw(Di,Xi,Yi) + oP(1)


=

1√
n

n

∑
i=1

[
w′

0φβ(Di,Xi,Yi) + β′φw(Di,Xi,Yi)
]
+ oP(1), (A.58)

where the fifth line uses ŵn −w0 = oP(1) and Assumption A.22.

Continuing from the last line above,

√
n(τ̂n − τ) =

(
w′

0 β′
) 1√

n

n

∑
i=1

(
φβ(Di,Xi,Yi)

φw(Di,Xi,Yi)

)
+ oP(1)

d−→
(
w′

0 β′
)
N

((
0q

0q

)
,

(
Σβ Σ′

w,β

Σw,β Σw

))
= N(0,w′

0Σβw0 + 2w′
0Σw,ββ+ β′Σwβ),

where the second line uses the Central Limit Theorem because the second moment of
(φβ(Di,Xi,Yi)

′,φw(Di,Xi,Yi)
′)′ exists and defines Σβ ≡ Var[φβ(Di,Xi,Yi)], Σw ≡

Var[φw(Di,Xi,Yi)], and Σw,β ≡ Cov[φw(Di,Xi,Yi),φβ(Di,Xi,Yi)], and the last line
follows from the continuous mapping theorem. The proposition holds from defining
σ2

τ,β ≡ w′
0Σβw0, σ2

τ,β,w ≡ w′
0Σw,ββ, and σ2

τ,w ≡ β′Σwβ.

Example A.24. Suppose Di ∈ {0, 1}, there is no other controls, and that Assumption A.8
holds. Then, the estimator for the treatment effects as follows for each j = 1, . . . , q:

˜̂βn,j =
1
n1

n

∑
i=1

DiỸi,j −
1
n0

n

∑
i=1

(1 − Di)Ỹi,j

= E[Ỹi,j|Di = 1]− E[Ỹi,j|Di = 0]

+
1
n1

n

∑
i=1

Di(Ỹi,j − E[Ỹi,j|Di = 1])− 1
n0

n

∑
i=1

(1 − Di)(Ỹi,j − E[Ỹi,j|Di = 0])

= β̃ j +
1
n1

n

∑
i=1

Di(Ỹi,j − E[Ỹi,j|Di = 1])− 1
n0

n

∑
i=1

(1 − Di)(Ỹi,j − E[Ỹi,j|Di = 0]), (A.59)

where the first line follows from the difference-in-means estimator, the second line adds
and subtracts E[Ỹi,j|Di = 1] and E[Ỹi,j|Di = 0], and the third line uses the definition that

81



β̃ j ≡ E[Ỹi,j|Di = 1]− E[Ỹi,j|Di = 0].

Hence, recentering and rescaling ˜̂βn,j for each j = 1, . . . , q gives

√
n(˜̂βn,j − β̃ j) =

√
n

n1

n

∑
i=1

Di(Ỹi,j − E[Ỹi,j|Di = 1])−
√

n
n0

n

∑
i=1

(1 − Di)(Ỹi,j − E[Ỹi,j|Di = 0])

=
n
n1

1√
n

n

∑
i=1

Di(Ỹi,j − E[Ỹi,j|Di = 1])

− n
n0

1√
n

n

∑
i=1

(1 − Di)(Ỹi,j − E[Ỹi,j|Di = 0])

=
1

pD

1√
n

n

∑
i=1

Di(Ỹi,j − E[Ỹi,j|Di = 1])

− 1
1 − pD

1√
n

n

∑
i=1

(1 − Di)(Ỹi,j − E[Ỹi,j|Di = 0]) + oP(1)

=
1√
n

n

∑
i=1

φj(Di, Ỹi,j) + oP(1), (A.60)

where the first line follows from (A.60), the third line uses n1
n − pD = n1

n − E[Di] =

oP(1) and n0
n − (1 − pD) = n0

n − E[1 − Di] = oP(1) by the weak law of large num-
bers, 1√

n ∑n
i=1 Di(Ỹi,j − E[Ỹi,j|Di = 1]) = OP(1), 1√

n ∑n
i=1(1 − Di)(Ỹi,j − E[Ỹi,j|Di = 1]) =

OP(1), the seconds moments are finite by Assumption A.8, and that oP(1)OP(1) = oP(1),

the last line uses φj(Di, Ỹi,j) ≡
Di(Ỹi,j−E[Ỹi,j|Di=1])

pD
− (1−Di)(Ỹi,j−E[Ỹi,j|Di=0])

1−pD
.

Next, define φβ(Di, Ỹi) ≡ (φ1(Di, Ỹi,1), . . . , φq(Di, Ỹi,q))
′. I can stack (A.60) across

j = 1, . . . , q to get the following asymptotic linear representation:

√
n(̂̃βn − β̃) =

1√
n

n

∑
i=1

φβ(Di, Ỹi) + oP(1).

△

A.7.4 Large-sample properties for the variance-minimizing weight

In this subsection, I show the large-sample properties of the optimal weights for the
variance-minimization problem in (14).

Assumption A.25.

(a) Let Σ̂n be a consistent estimator of Σ.

(b) Σ and Σ̂n are positive definite matrices.
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(c) Suppose that

√
n

(
β̂n − β

vech[Σ̂n − Σ]

)
d−→
(

Zβ

Zvech[Σ]

)
= N

((
0q

0ℓ

)
,

(
Σ Ψ′

Σ,β

ΨΣ,β ΨΣ

))
.

Let ŵvmc,n be the solution to (14) when Σ is replaced by the sample analog Σ̂n, i.e.,

min
w∈Wcvx

w′Σ̂nw, (A.61)

The class of weights Wcvx creates an additional complication for statistical inference as
the weights are constrained to be nonnegative.

First, the following proposition shows that ŵvmc,n is consistent.

Proposition A.26. Let Assumption A.25 hold. Let wvmc and ŵvmc,n be as defined in (14) and
(A.61), respectively. Then, ŵvmc,n

p−→ wvmc.

Next, I derive the limiting distribution of the weights in the following proposition.

Theorem A.27. Consider the same notations as in Proposition A.26. Define the random variable
Z̃ ≡ 2(w′

vmc ⊗ I)BZvech[Σ] where B is a duplication matrix such that Bvech[
√

n(Σ − Σ̂n)] =

vec[
√

n(Σ − Σ̂n)]. Let µ⋆ ≡ (µ⋆
1 , . . . , µ⋆

q)
′ be the Lagrange multipliers to the problem (14).

Denote Jactive ⊆ {1, . . . , q} as the set of indices for the active inequality constraints for Wcvx

at wvmc and Jactive,+(µ
⋆) ≡ {j ∈ Jactive : µ⋆

j > 0}. Let h⋆(ζ) be the optimal solution to the
following program:

min
h∈Rq

h′ζ + h′Σh,

s.t. h′1q = 0,

hj = 0 for j ∈ Jactive,+(µ
⋆),

hj ≥ 0 for j ∈ Jactive\Jactive,+(µ
⋆).

(A.62)

Then,

√
n(ŵvmc,n −wvmc)

d−→ h⋆(Z̃). (A.63)

The limiting distribution is expressed in terms of a stochastic program (A.62). The
following corollary shows the limiting distribution of ŵ′

vmc,nβ̂n.
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Corollary A.28. Consider the same notations and assumptions as in Theorem A.27. Then,

√
n(ŵ′

vmc,nβ̂n −w′
vmcβ)

d−→ w′
vmcZβ + β′h⋆(Z̃).

Finally, I show that a normal limiting distribution can be restored if the population
solution wvmc is all positive.

Corollary A.29. Consider the same notations and assumptions as in Theorem A.27. Let wvmc >

0q.

(a) Define Bvmc ≡ −Σ−1
(
Iq − 1q

1′qΣ−1

1′qΣ−11q

)
(w′

vmc ⊗ I)B. Then,

√
n(ŵvmc,n −wvmc)

d−→ N(0q,BvmcΨΣB
′
vmc).

(b) Define σ2
vmc ≡ w′

vmcΣwvmc + 2w′
vmcΨ′

Σ,βB
′
vmcβ+ β′BvmcΨΣB

′
vmcβ. Then,

√
n(ŵ′

vmc,nβ̂n −w′
vmcβ)

d−→ N(0, σ2
vmc).

A.7.4.1 Proofs

Proof of Proposition A.26. This follows from Proposition B.12 with M(B,w) = 0.

Proof of Theorem A.27. The problems (14) and (A.61) can be viewed as setting M(B,w) =

0 for the minimax problem (21) (or setting B = 0). In this case, I have wvmc = w⋆(0) =
w(0q), where w(·) is defined as a solution to (B.75). Applying Proposition B.13 applies
with M(B,w) = 0 gives

√
n(ŵvmc,n −wvmc) =

√
n[w(∇dn(wvmc))−w(0q)] + oP(1)

= Dw0(
√

n∇dn(wvmc)) + oP(1),

where Dw0 is the directional derivative at 0, and dn(·) is given in (B.76).

To compute the directional derivative Dw0(·), I utilize the extra structure for this
B = 0 case. In particular, problem (14) reduces to minw∈Wcvx w

′Σw. In this problem, the
equality constraint in Wcvx is w′1q = 1 (see (2)), so its gradient is 1q. At any w ∈ Wcvx,
at least one component of w is nonzero. Hence, the gradient of the active inequality
constraints (i.e., those such that wj = 0) cannot be linearly dependent with the equality
constraint in Wcvx. Hence, linear independence constraint qualification (LICQ) is satis-
fied at the optimal solution (see, for instance, Nocedal and Wright (2006, Definitions 12.1
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and 12.4)). Hence, the Lagrange multipliers are unique by Wachsmuth (2013).

Let f (w) ≡ w′Σw and f̂n(w) ≡ w′Σ̂nw for any w ∈ Wcvx. Then,

√
n∇dn(w) =

√
n(∇ f̂n(w)−∇ f (w))

= 2
√

n(Σ̂n − Σ)w

= 2(w′ ⊗ I) vec[
√

n(Σ̂n − Σ)]

= 2(w′ ⊗ I)Bvech[
√

n(Σ̂n − Σ)]

d−→ 2(w′ ⊗ I)BZvech[Σ] ≡ Z̃,

where the third line used a duplication matrix B such that Bvech[
√

n(Σ̂n − Σ)] =

vec[
√

n(Σ̂n − Σ)], and the derivation uses properties of the Kronecker product and vec-
torizations (see, for instance, Example 18.5 of Magnus and Neudecker (2019)) and the
continuous mapping theorem. The definition of Z̃ follows from the one in the state-
ment of the theorem. The directional derivative Dw0(ζ) is given by h⋆(ζ) in (A.62). It
is also unique because Σ is assumed to be positive definite. Then, the convergence in
distribution follows page 163 of Shapiro et al. (2021).

Proof of Corollary A.28. Using Proposition B.13 and Theorem A.27,

√
n

(
β̂n − β

(Σ̂n − Σ)wvmc

)
=

√
n

(
β̂n − β

(w′
vmc ⊗ Iq) vec[Σ̂n − Σ]

)

=
√

n

(
β̂n − β

(w′
vmc ⊗ Iq)Bvech[Σ̂n − Σ]

)

=

(
Iq 0

0 (w′
vmc ⊗ Iq)B

)
√

n

(
β̂n − β

vech[Σ̂n − Σ]

)
d−→
(

Zβ

(w′
vmc ⊗ Iq)BZvech[Σ]

)
, (A.64)

where the first line uses the properties of the Kronecker product and vectorizations (see,
for instance, Example 18.5 of Magnus and Neudecker (2019)), the second line uses the
duplication matrix B as in Theorem A.27, and the last line uses the convergence of
distribution in Assumption A.25. Thus,

√
n(ŵ′

vmc,nβ̂n −w′
vmcβ) =

√
n[ŵ′

vmc,n(β̂n − β) + β′(ŵvmc,n −wvmc)]
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=
(
ŵ′

vmc,n β′
)( √

n(β̂n − β)
√

n(ŵvmc,n −wvmc)

)
d−→ w′

vmcZβ + β′h⋆
(
Z̃
)

,

where the last line follows from (A.64).

Proof of Corollary A.29(a). In this case, none of the inequality constraints are active.
Hence, (A.62) reduces to

min
h∈Rq

h′ζ + h′Σh,

s.t. h′1q = 0.
(A.65)

Let the Lagrangian of (A.65) be

L = h′ζ + h′Σh+ κ(1′qh),

where κ is the Lagrangian multiplier. The first-order condition with respect to h leads to

0 =
∂L
∂h

= ζ + 2Σh+ κ1q.

Rearranging gives the solution h⋆
0(ζ) = −1

2 Σ−1(ζ + κ1q). But h⋆
0(ζ)

′1q = 0, so this gives
−ζ ′Σ−11q − κ1′qΣ−11q = 0, or equivalently,

κ = −
1′qΣ−1ζ

1′qΣ−11q
.

Hence,

h⋆
0(ζ) = −1

2
Σ−1

(
ζ −

1′qΣ−1ζ

1′qΣ−11q
1q

)
= −1

2
Σ−1

(
Iq − 1q

1′qΣ−1

1′qΣ−11q

)
ζ.

Recall from the statement of (A.27) that Z̃ ≡ 2(w′
vmc ⊗ I)BZvech[Σ]. Then,

√
n(ŵvmc,n −wvmc)

d−→ h⋆
0(Z̃) = −1

2
Σ−1

(
Iq − 1q

1′qΣ−1

1′qΣ−11q

)
Z̃.

The result follows from defining the Bvmc as in the statement of this corollary.
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Proof of Corollary A.29(b). Using Proposition B.13, Corollary A.28, and Corollary A.29(a),
I can write

√
n(ŵ′

vmc,nβ̂n −w′
vmcβ)

=
√

n[ŵ′
vmc,n(β̂n − β) + β′(ŵvmc,n −wvmc)]

=
(
ŵ′

vmc,n β′
)( √

n(β̂n − β)
√

n(ŵvmc,n −wvmc)

)

=
(
ŵ′

vmc,n β′
)( √

n(β̂n − β)

Bvmc
√

n vech[Σ̂n − Σ]

)
+ oP(1)

d−→
(
w′

vmc β′
)( Zβ

BvmcZvech[Σ]

)
∼ N(0,w′

vmcΣwvmc + 2w′
vmcΨ′

Σ,βB
′
vmcβ+ β′BvmcΨΣB

′
vmcβ), (A.66)

by Assumption A.25.

A.8 Additional simulations related to Proposition 3.6

The goal of this section is to examine the impact of c′wpca being close to binding. The
DGP is as follows. I assume that there are q = 25 outcomes that follow the linear model

Yi,j = ξ j + β jDi + Ui,j,

as in (8). The treatment variable Di is binary such that P[Di = 1] = 0.3. The error
terms follow Ui ∼ N(0q, ΣU) and Ui ⊥⊥ Di. To have a more realistic DGP, I calibrate ΣU

using the data from Bau (2022). I set the variance matrix of Yi such that it matches the
correlation matrix for the outcomes from the asset index in Bau (2022).

I assume that PCA is used to aggregate the outcomes, and that c = e1 (i.e., unit vector
where the first entry equals 1 and the rest equals 0) is used in the sign normalization
constraint for the PCA problem. I set β such that β j = 0.5 for j = 16, . . . , 20 and β j = 0
otherwise. In addition, I consider different DGPs on the correlation matrix of Yi that
replaces Corr[Yi,1, Yi,2] with Corr[Yi,1, Yi,2] + ω using the values shown in Table 3. I show
the value of wpca,1 corresponding to each value of ω. Such changes allow me to obtain
different values of the first entry in the leading eigenvector. In the following, I write
τ0 = w′

pcaβ as the value of the target parameter implied by the DGP and τ̂n = ŵ′
pca,nβ̂n

as the corresponding estimator.
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Table 3: The values of ω used in the DGPs.

ω −0.518 −0.100 0.042 0.127

wpca,1 0.070 0.025 0.010 0.001

Figure A.2: Distribution of τ̂n under different DGPs.
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The simulations are based on 1,000 replications. Figure A.2 shows the distribution
of ŵ′

pca,nβ̂n for each of the DGPs in which the distribution is nonstandard when wpca,1

is close to 0. In particular, as wpca,1 becomes closer to 0, the distribution of τ̂n becomes
nonstandard (and bimodal).

A.9 Supplemental details on empirical examples

Figure A.3 shows the weights on the asset variables in Bau (2022).
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Figure A.3: Weights on the asset variables in Bau (2022).
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B Appendix for Section 4

B.1 Details for the asymptotic validity for FLCI

In this appendix, I provide the main results regarding the asymptotic validity for FLCI.
Let P be the class of distributions on β̂n. In addition, let Sn(B) ≡ {(θ, P) ∈ Θ × P :
√

n(βP − θ1q) ∈ S(B)}. I will require the following assumptions on uniformity.

Assumption B.1.

(a) Σ̂n is uniformly consistent for Σθ,P for any (θ, P) ∈ Sn(B).

(b) For any (θ, P) ∈ Sn(B), Σθ,P ∈ M, where M is a compact set of positive definite matrices
with eigenvalues bounded below by λlb > 0 and above by λub < ∞ where λub > λlb.

(c)
√

n(β̂n − βP) converges in distribution to N(0, Σθ,P) uniformly under (θ, P) ∈ Sn(B).

I maintain the following assumption about the amount of misspecification. It is an
asymptotic device to control the misspecification and should not be interpreted as βP

being equal to θ as n −→ ∞.

Assumption B.2. Let P ∈ P and S(B) be the parameter space as in Section 4.2 for B ≥ 0.
Then, βP = θ1q + bn where bn = n−1/2b̃ and b̃ ∈ S(B) holds.

The following theorem establishes the validity of the FLCI.

Proposition B.3. Let α ∈ (0, 1). Let Assumptions 2.2, 4.9, B.1, and B.2 hold, and Σ̂n be an
estimator of Σ that satisfies the preceding assumption.

For a given finite B ≥ 0, let ŵn be the weight estimated from the minimax problem using B
or the adaptive problem over B = [B, B], with Σ replaced by Σ̂n. Let ĉα,n be the smallest critical
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value that satisfies (30) that uses Σ̂n instead of Σ.

Write In ≡
[
ŵ′

nβ̂n ± ĉα,n

√
ŵ′

nΣ̂nŵn
n

]
as the sample analog of the confidence interval in (29).

Then, In is asymptotically valid, i.e.,

lim inf
n→∞

inf
(θ,P)∈Sn(B)

P[θ ∈ In] ≥ 1 − α.

B.2 Proofs for propositions in the main text

Proof of Proposition 4.10(a). This part of the proposition characterizes the shape of A(B,w)

over B ∈ B for a given w ∈ Wcvx. By direct computation, the derivative of A(B,w) with
respect to B2 is given by

∂A(B,w)

∂(B2)
=

R⋆(B) ∂Rmax(B,w)
∂(B2)

− Rmax(B,w) ∂R⋆(B)
∂(B2)

[R⋆(B)]2
≡ N(B,w)

[R⋆(B)]2
, (B.1)

for any given w ∈ Wcvx where

N(B,w) ≡ R⋆(B)
∂Rmax(B,w)

∂(B2)
− Rmax(B,w)

∂R⋆(B)
∂(B2)

, (B.2)

is the numerator of ∂A(B,w)
∂(B2)

in (B.1).

From Proposition B.6, there are only three possibilities on the shape of A(B,w) against
B ∈ [B, B] for a given w ∈ Wcvx.

First, if N(0,w) ≥ 0, then N(B,w) ≥ 0 for any B ≥ 0. Thus, ∂A(B,w)
∂(B2)

≥ 0, i.e., A(B,w)

is nondecreasing in B.

Second, if N(0,w) ≤ 0, then there are two scenarios to consider. The first scenario is
that N(B,w) ≤ 0 for any B ≥ 0. Hence, ∂A(B,w)

∂(B2)
≤ 0, i.e., A(B,w) is nonincreasing in B.

The remaining scenario is that there exists B0 such that N(B,w) ≤ 0 for any B ∈ [0, B0)

and N(B,w) ≥ 0 for any B ∈ [B0, ∞). This means A(B,w) is nonincreasing in B for any
B ∈ [0, B0) and nondecreasing in B for any B ∈ [B0, ∞). This completes the proof.

Proof of Proposition 4.10(b). In all the possible cases discussed in Proposition 4.10(a),
the maximum of A(B,w) over B ∈ [B, B] where B ≥ B ≥ 0 must be achieved at the
endpoints.

Proof of Proposition 4.11. To begin with, since B and B are held fixed in the proof, I de-
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fine A(w) ≡ A(B,w) and A(w) ≡ A(B,w) for any w ∈ Wcvx in this proof. I also define
Amax(w) ≡ Amax(B,w) = max{A(w), A(w)} in this proof. Using the assumptions on
the adaptive regret and the definition of the optimally adaptive weight in (26), I have
wA = arg minw∈Wcvx

Amax(w) = arg minw∈Wcvx
max{A(w), A(w)}.

Assume to the contrary that A(wA) ̸= A(wA). Set

A(wA) > A(wA) (B.3)

without loss of generality. This means Amax(wA) = A(wA). Define

∆A ≡ A(wA)− A(wA) > 0. (B.4)

Let w1 ≡ arg minw∈Wcvx
A(w). Note that w1 is unique since A(w) is strictly convex

in w ∈ Wcvx. In addition, A(w1) = 1 from the definition of adaptive regret. This follows
because A(w) ≡ Rmax(B,w)

minu∈Wcvx Rmax(B,u) . Thus, minw∈Wcvx A(w) =
minw∈Wcvx Rmax(B,w)
minu∈Wcvx Rmax(B,u) = 1.

For the same argument, minw∈Wcvx A(w) = 1 as well. Since wA ∈ Wcvx, it follows that
A(wA) ≥ minw∈Wcvx A(w) and A(wA) ≥ minw∈Wcvx A(w). Together with A(wA) >

A(wA) in (B.3), it follows that

A(wA) > A(wA) ≥ min
w∈Wcvx

A(w) = 1. (B.5)

From the above, it follows that wA ̸= w1 because A(w1) = 1 and A(wA) > 1.

Since A(w) is assumed to be strictly convex in w ∈ Wcvx in the proposition, it follows
that for any t ∈ (0, 1), the following holds

A((1 − t)wA + tw1) < (1 − t)A(wA) + tA(w1) = (1 − t)A(wA) + t ≤ A(wA), (B.6)

where the last inequality follows from (B.5).

Next, A(w) is continuous in w ∈ Wcvx. In particular, it is continuous at wA. This
means that for any ε > 0, there exists φϵ > 0 such that for any w ∈ Wcvx, ∥w−wA∥ <

φϵ implies |A(w) − A(wA)| < ε. Set tε = φϵ

2∥w1−wA∥
> 0. From the discussion two

paragraphs ago, w1 ̸= wA, so this choice of tε is well-defined. If such tε leads to tε > 1,
divide it by a large enough number such that tε ∈ (0, 1). This value of tε will satisfy

∥[(1 − tε)wA + tεw1]−wA∥ = ∥ − tεwA + tεw1∥ = tε∥w1 −wA∥ =
φε

2
< φε.
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Hence, for such tε, |A((1− tε)wA + tεw1)− A(wA)| < ϵ. In addition, (1− tε)wA + tεw1 ∈
Wcvx. This follows because tε > 0, wA,w1 ∈ Wcvx, so (1 − tε)wA + tεw1 ≥ 0q, and that
[(1 − tε)wA + tεw1]

′1q = (1 − tε)w′
A1q + tεw

′
11q = (1 − tε) + tε = 1. This means

A(wA)− ε < A((1 − tε)wA + tεw1) < A(wA) + ε. (B.7)

Set ε = ∆A
4 > 0, so that

A((1 − tε)wA + tεw1) < A(wA) + ε = A(wA)− ∆A + ε = A(wA)−
3
4

∆A, (B.8)

where the first inequality follows from (B.7), the first equality follows from (B.4), and the
last equality follows from the choice of ε.

Combining the results in (B.6) and (B.8), I have

Amax((1 − tε)wA + tεw1) = max{A((1 − tε)wA + tεw1), A((1 − tε)wA + tεw1)}

< max
{

A(wA), A(wA)−
3
4

∆A

}
≤ A(wA),

which shows that wA cannot minimize Amax(w). The argument for assuming A(wA) <

A(wA) is similar in (B.3). This completes the proof.

Proof of Proposition B.3. Let w⋆(B, Σ) be the solution to the minimax problem or wA(Σ)

be the solution to the adaptive problem over B = [B, B]. Lemma B.7 showed that
w⋆(B, Σ) is uniformly continuous in Σ. Lemma B.8 showed that wA(Σ) is uniformly
continuous in Σ. Here, ŵn is either w⋆(B, Σ̂n) or wA(Σ̂n). Then, I can write

√
n(τ̂n − θ) =

√
n(ŵ′β̂n − θ)

= ŵ′
n
√

n(β̂n − βP) + ŵ′
n
√

n(βP − θ1q)

= ŵ′
n
√

n(β̂n − βP) + ŵ′
nb̃,

where the first line follows from the definition of the estimator τ̂n, the second line fol-
lows from adding and subtracting and that ŵn ∈ Wcvx, and the third line follows form
Assumption B.2. In the above, the uniform consistency of ŵn follows from the begin-
ning of the proof. The convergence of

√
n(β̂n − βP) follows from Assumption B.1 and

the asymptotic variance is also bounded away from zero. The proof then follows from
applying Appendix C of Armstrong and Kolesár (2021b) in the current context.
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B.3 Supplemental results and proofs

Lemma B.4. Let Assumption 4.9 hold. Let w⋆(B) be the solution to the minimax problem (21).
Then, for any B1, B2 ≥ 0,

R⋆(B2) ≤ R⋆(B1) + (B2
2 − B2

1)m(w⋆(B1)).

Proof of Lemma B.4. Recall that the minimax problem (21) has a unique solution for
each B ≥ 0. Then, for any B1, B2 ≥ 0, I have

R⋆(B2) = V(w⋆(B2)) + B2
2m(w⋆(B2))

≤ V(w⋆(B1)) + B2
2m(w⋆(B1))

= V(w⋆(B1)) + B2
1m(w⋆(B1)) + (B2

2 − B2
1)m(w⋆(B1))

= R⋆(B1) + (B2
2 − B2

1)m(w⋆(B1)),

where the first line uses the definition of minimax risk from (21), the second line follows
because w⋆(B1) is not an optimal solution to the minimax problem for B = B2, the third
line adds and subtracts B2

1m(w⋆(B1)), and the last line follows from the definition of the
minimax risk from (21) again.

Lemma B.5. Consider the same assumptions and notations as in Lemma B.4. Then, m(w⋆(B))
is nonincreasing in B.

Proof of Lemma B.5. For any B1 > B2 ≥ 0 (I consider strict inequality to make sure the
division below is well-defined), I have

R⋆(B1) ≤ R⋆(B2) + (B2
1 − B2

2)m(w⋆(B2)), (B.9)

R⋆(B2) ≤ R⋆(B1) + (B2
2 − B2

1)m(w⋆(B1)). (B.10)

from Lemma B.4. Since B2
1 − B2

2 > 0, the above inequalities imply that

m(w⋆(B2)) ≥
R⋆(B1)− R⋆(B2)

B2
1 − B2

2
≥ m(w⋆(B1)),

where the first inequality uses (B.9) and the second inequality uses (B.10).

Proposition B.6. Let Assumption 4.9 hold. Consider the minimax and adaptive problems defined
in (21) and (24) respectively. Then, for any w ∈ Wcvx, N(B,w) defined in (B.2) is nondecreasing
in B ≥ 0.
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Proof of Proposition B.6. To begin with, note that

∂R⋆(B)
∂(B2)

∣∣∣∣
w=w⋆(B)

= m(w⋆(B)),

by Assumption 4.9 and Danskin’s theorem (see, for instance, Bertsekas (2009)) by noting
that for each given w ∈ Wcvx, Rmax(w, B) = V(w) + (B2)m(w) is affine in (B2), Wcvx is
compact, and that w⋆(B) is unique.

Since M(B,u) = B2m(u) for any B ≥ 0 and u ∈ Wcvx, then ∂M(B,u)
∂(B2)

= m(u) and
∂M(B,w⋆(B))

∂(B2)
= m(w⋆(B)). Hence, N(B,u) in (B.2) can be written as

N(B,u) = R⋆(B)m(u)− Rmax(B,u)m(w⋆(B)). (B.11)

Consider any B1 > B2 ≥ 0, note that

B2
1m(w⋆(B1))− B2

2m(w⋆(B2)) = [B2
2 + (B2

1 − B2
2)]m(w⋆(B1))− B2

2m(w⋆(B2))

= B2
2[m(w⋆(B1))− m(w⋆(B2))]

+ (B2
1 − B2

2)m(w⋆(B1)). (B.12)

For any u ∈ Wcvx and B1 ≥ B2 ≥ 0, I have

N(B1,u)− N(B2,u) = [R⋆(B1)m(u)− Rmax(B1,u)m(w⋆(B1))]

− [R⋆(B2)m(u)− Rmax(B2,u)m(w⋆(B2))]

= m(u)[R⋆(B1)− R⋆(B2)]− Rmax(B1,u)m(w⋆(B1))

+ Rmax(B2,u)m(w⋆(B2))

= m(u)[R⋆(B1)− R⋆(B2)]− [V(u) + B2
1m(u)]m(w⋆(B1))

+ [V(u) + B2
2m(u)]m(w⋆(B2))

= m(u)[R⋆(B1)− R⋆(B2)]− V(u)[m(w⋆(B1))− m(w⋆(B2))]

− m(u)[B2
1m(w⋆(B1))− B2

2m(w⋆(B2))]

= m(u)[R⋆(B1)− R⋆(B2)]− V(u)[m(w⋆(B1))− m(w⋆(B2))]

− m(u)B2
2[m(w⋆(B1))− m(w⋆(B2))]

− m(u)(B2
1 − B2

2)m(w⋆(B1))

= m(u)[R⋆(B1)− R⋆(B2) + (B2
2 − B2

1)m(w⋆(B1))]

− Rmax(B2,u)[m(w⋆(B1))− m(w⋆(B2))]
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≥ 0,

the first equality uses (B.11), the second equality groups the terms associated with m(u),
the third equality uses the definition of the maximum risk in (21) and the assumption
that M(B,u) = B2m(u), the fourth equality groups the terms by V(u) and m(u), the
fifth equality uses (B.12), and the sixth equality groups the terms by m(u) and uses the
definition of Rmax(B2,u). The last line follows from m(u) ≥ 0, Rmax(B2,u) ≥ 0, Lemmas
B.4 and B.5.

Lemma B.7. Let Assumption 4.9 hold. Assume that M is a compact set of positive definite
matrices with eigenvalues bounded below by λlb > 0 and above by λub < ∞ where λub > λlb.
For a given finite B ≥ 0, the optimal solution to the minimax problem in (21) is uniformly
continuous in Σ ∈ M.

Proof of Lemma B.7. Let w⋆(B, Σ) be the optimal solution to the minimax problem in
(21). This notation is to emphasize Σ as an argument. Under Assumption 4.9, the
maximum risk function can be written as

Rmax(w, B, Σ) ≡ V(w, Σ) + B2m(w) = w′Σw+ B2m(w), (B.13)

where I have further denoted the functions Rmax(w, B, Σ) and V(w, Σ) as a function
of Σ to emphasize the dependence on Σ. In the above, V(w, Σ) is strongly convex in
w ∈ Wcvx for a given Σ ∈ M. The function m(w) is convex in w ∈ Wcvx. By the
definitions of strong convexity and convexity (see, for instance, Aragón et al. (2019)), it
follows from (B.13) that Rmax(w, B, Σ) is strongly convex in w ∈ Wcvx. Therefore, for
any w1,w2 ∈ Wcvx and Σ ∈ M,

Rmax(w1, B, Σ) ≥ Rmax(w2, B, Σ) + g′(w1 −w2) +
CR

2
∥w1 −w2∥2

2 (B.14)

for any g ∈ ∂Rmax(w2, B, Σ) (g is a subdifferential of Rmax(w2, B, Σ) and ∂Rmax(w2, B, Σ)

is the set of all subdifferentials) and for some CR > 0.

Next, for any Σ1, Σ2 ∈ M and w ∈ Wcvx,

Rmax(w, B, Σ1)− Rmax(w, B, Σ2) = V(w, Σ1) + B2m(w)− V(w, Σ2)− B2m(w)

= w′Σ1w−w′Σ2w

= w′(Σ1 − Σ2)w. (B.15)
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Hence, by the triangle inequality and (B.15),

|Rmax(w, B, Σ1)− Rmax(w, B, Σ2)| ≤ ∥Σ1 − Σ2∥2∥w∥2
2 ≤ ∥Σ1 − Σ2∥2, (B.16)

since w ∈ Wcvx.

Recall the maximum risk (B.13) is strictly convex in w ∈ Wcvx for any Σ ∈ M, so
the optimal solution is unique. For any Σ1, Σ2 ∈ M, let w⋆(B, Σ1) and w⋆(B, Σ2) be the
optimal solution to the minimax problem. By the optimality of the solutions, I have

Rmax(w
⋆(B, Σ1), B, Σ1) ≤ Rmax(w

⋆(B, Σ2), B, Σ1), (B.17)

Rmax(w
⋆(B, Σ2), B, Σ2) ≤ Rmax(w

⋆(B, Σ1), B, Σ2). (B.18)

Note that Wcvx is a polyhedral set because it is a collection of finite inequalities. For
any w ∈ Wcvx, Rmax(w, B, Σ2) < ∞ for any finite B ≥ 0. Denote ri as relative interior
and dom as effective domain (see, for instance, Bertsekas (2009), for definitions). In
addition, ri(dom(Rmax)) ∩W ̸= ∅. Recall that w⋆(B, Σ2) minimizes the maximum risk
Rmax(w, B, Σ2) over w ∈ Wcvx. By Proposition 5.4.7 of Bertsekas (2009), there exists
g2 ∈ ∂Rmax(w⋆(B, Σ2), B, Σ2), I have

g′2(w−w⋆(B, Σ2)) ≥ 0, (B.19)

for any w ∈ Wcvx.

Applying (B.14) with w1 = w⋆(B, Σ1), w2 = w⋆(B, Σ2), g = g2, and Σ = Σ2, I have

CR

2
∥w⋆(B, Σ1)−w⋆(B, Σ2)∥2

2 ≤ Rmax(w
⋆(B, Σ1), B, Σ2)− Rmax(w

⋆(B, Σ2), B, Σ2)

− g′2[w
⋆(B, Σ1)−w⋆(B, Σ2)],

≤ Rmax(w
⋆(B, Σ1), B, Σ2)− Rmax(w

⋆(B, Σ2), B, Σ2)

= [Rmax(w
⋆(B, Σ1), B, Σ2)− Rmax(w

⋆(B, Σ1), B, Σ1)]

+ [Rmax(w
⋆(B, Σ1), B, Σ1)− Rmax(w

⋆(B, Σ2), B, Σ1)]

+ [Rmax(w
⋆(B, Σ2), B, Σ1)− Rmax(w

⋆(B, Σ2), B, Σ2)]

≤ [Rmax(w
⋆(B, Σ1), B, Σ2)− Rmax(w

⋆(B, Σ1), B, Σ1)]

+ [Rmax(w
⋆(B, Σ2), B, Σ1)− Rmax(w

⋆(B, Σ2), B, Σ2)]

≤ 2∥Σ1 − Σ2∥2 (B.20)

where the second inequality follows from (B.19), the third inequality follows from (B.17),
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and the fourth inequality follows from (B.16).

Therefore, the above shows that for any ε > 0, there exists δ = CR
4 ε2 > 0 such that for

any Σ1, Σ2 ∈ M and ∥Σ1 − Σ2∥2 < δ, ∥w⋆(B, Σ1)−w⋆(B, Σ2)∥2 < ε holds.

Lemma B.8. Consider the same assumptions and notations as in Lemma B.7. Write m(w) =

maxb∈S(1)(w′b)2. The optimal solution to the adaptive problem in (26) is uniformly continuous
in Σ ∈ M.

Proof of Lemma B.8. Similar to the proof of Lemma B.7, I also write the maximum
risk also as a function of Σ as in (B.13). As a result, the adaptive regret for a given
w ∈ Wcvx, B ∈ [0, ∞) and Σ ∈ M is A(w, B, Σ) ≡ Rmax(w,B,Σ)

R⋆(B,Σ) where R⋆(B, Σ) ≡
minw∈Wcvx Rmax(w, B, Σ). Let B = [B, B]. Since the solution is unique, I also denote
the optimally adaptive estimator as

wA(Σ) = arg min
w∈Wcvx

Amax(w, Σ), (B.21)

and
Amax(w, Σ) ≡ max{A(w, B, Σ), A(w, B, Σ)}

in this proof.

I have showed that Rmax(w, B, Σ) is uniformly continuous in Σ ∈ M in Lemma B.7.
Next, for any Σ1, Σ2 ∈ M, let w⋆(B, Σ1) and w⋆(B, Σ2) be the optimal solution to the
minimax problem in (21) as in Lemma B.7. Then, R⋆(B, Σ1) = Rmax(w⋆(B, Σ1), B, Σ1)

and R⋆(B, Σ2) = Rmax(w⋆(B, Σ2), B, Σ2). Thus,

R⋆(B, Σ1)− R⋆(B, Σ2) = Rmax(w
⋆(B, Σ1), B, Σ1)− Rmax(w

⋆(B, Σ2), B, Σ2)

≤ Rmax(w
⋆(B, Σ2), B, Σ1)− Rmax(w

⋆(B, Σ2), B, Σ2),

= w⋆(B, Σ2)
′Σ1w

⋆(B, Σ2) + B2m(w⋆(B, Σ2))

−w⋆(B, Σ2)
′Σ2w

⋆(B, Σ2)− B2m(w⋆(B, Σ2))

= w⋆(B, Σ2)
′(Σ1 − Σ2)w

⋆(B, Σ2)

≤ |w⋆(B, Σ2)
′(Σ1 − Σ2)w

⋆(B, Σ2)|
≤ ∥Σ1 − Σ2∥2∥w⋆(B, Σ2)∥2

2

≤ ∥Σ1 − Σ2∥2, (B.22)

where the second line follows from Rmax(w⋆(B, Σ1), B, Σ1) ≤ Rmax(w, B, Σ1) for any
w ∈ Wcvx, the third line follows from the definition of the maximum risk function,
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and the last line uses that ∥w⋆(B, Σ2)∥2
2 ≤ 1 because w⋆(B, Σ2) ∈ Wcvx. By a similar

reasoning, I have

R⋆(B, Σ2)− R⋆(B, Σ1) = Rmax(w
⋆(B, Σ2), B, Σ2)− Rmax(w

⋆(B, Σ1), B, Σ1)

≤ Rmax(w
⋆(B, Σ1), B, Σ2)− Rmax(w

⋆(B, Σ1), B, Σ1),

≤ ∥Σ1 − Σ2∥2. (B.23)

Combining (B.22) and (B.23), I obtain

|R⋆(B, Σ1)− R⋆(B, Σ2)| ≤ ∥Σ1 − Σ2∥2. (B.24)

Next, I bound R⋆(B, Σ). For any Σ ∈ M and finite B ≥ 0, I have

R⋆(B, Σ) = w′Σw+ B2m(w) ≥ w′Σw ≥ λlb∥w∥2
2 ≥ λlb

q
, (B.25)

because m(w) ≥ 0, Σ − λlbIq is positive semidefinite, ∥w∥2
2 ≥ 1

q by the Cauchy-Schwarz
inequality. For the upper bound, note that m(w) ≤ 1 because m(w) = maxb∈S(1)(w′b)2,
(w′b)2 ≤ ∥w∥2

p⋆∥b∥2
p ≤ 1, ∥b∥2

p ≤ 1 because b ∈ S(1) and ∥w∥2
p⋆ ≤ 1. Hence,

R⋆(B, Σ) = max
w∈W

[w′Σw+ B2m(w)] ≤ λub∥w∥2
2 + B2 ≤ λub + B2, (B.26)

is an upper bound on R⋆(B, Σ) because λubIq − Σ is positive semidefinite.

Since R⋆(B, Σ) > 0 for any Σ ∈ M from (B.25), it follows that 1
R⋆(B,Σ) > 0. Thus,

∣∣∣∣ 1
R⋆(B, Σ1)

− 1
R⋆(B, Σ2)

∣∣∣∣ ≤ ∣∣∣∣R⋆(B, Σ1)− R⋆(B, Σ2)

R⋆(B, Σ1)R⋆(B, Σ2)

∣∣∣∣ ≤ q2∥Σ1 − Σ2∥2

λ2
lb

(B.27)

using (B.24) and (B.25).

The function R⋆(B, Σ) is positive from (B.25) and also uniformly continuous in Σ ∈ M
from (B.24) and by the definition. It follows that for any Σ1, Σ2 ∈ M,

|A(w, B, Σ1)− A(w, B, Σ2)| =
∣∣∣∣Rmax(w, B, Σ1)

R⋆(B, Σ1)
− Rmax(w, B, Σ2)

R⋆(B, Σ2)

∣∣∣∣
=

∣∣∣∣Rmax(w, B, Σ1)− Rmax(w, B, Σ2)

R⋆(B, Σ1)

+ Rmax(w, B, Σ2)

[
1

R⋆(B, Σ1)
− 1

R⋆(B, Σ2)

]∣∣∣∣
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≤ |Rmax(w, B, Σ1)− Rmax(w, B, Σ2)|
|R⋆(B, Σ1)|

+ |Rmax(w, B, Σ2)|
∣∣∣∣ 1
R⋆(B, Σ1)

− 1
R⋆(B, Σ2)

∣∣∣∣
≤ q∥Σ1 − Σ2∥2

λlb
+

q2(λub + B2)∥Σ1 − Σ2∥2

λ2
lb

≡ K1(B)∥Σ1 − Σ2∥2, (B.28)

where the second last line uses (B.16), (B.25), (B.26), (B.27), and Rmax(w, B, Σ2) > 0, and
the last line defined K1(B) ≡ q

λlb
+ q2(λub+B2)

λ2
lb

≥ 0.

Next, since |max{a1, a2} − max{b1, b2}| ≤ max{|a1 − b1|, |a2 − b2|}, and K1(B) ≥ 0
in (B.28), using the above derivation on the bound of A(w, B, Σ2), this shows that there
exists K2 > 0 such that

|Amax(w, Σ1)− Amax(w, Σ2)|
=
∣∣max{A(w, B, Σ1), A(w, B, Σ1)} − max{A(w, B, Σ2), A(w, B, Σ2)}

∣∣
≤ max{|A(w, B, Σ1)− A(w, B, Σ2)|, |A(w, B, Σ1)− A(w, B, Σ2)|}
≤ max{K1(B)∥Σ1 − Σ2∥2,K1(B)∥Σ1 − Σ2∥2}
≤ max{K1(B),K1(B)}∥Σ1 − Σ2∥2

≡ K2∥Σ1 − Σ2∥2, (B.29)

where the last line defined K2 ≡ max{K1(B),K1(B)} from (B.28).

Now, for any Σ1, Σ2 ∈ M, consider wA(Σ1) and wA(Σ2) that are optimal solution to
the adaptive problem (B.21). Then,

Amax(wA(Σ1), Σ1) ≤ Amax(wA(Σ2), Σ1), (B.30)

Amax(wA(Σ2), Σ2) ≤ Amax(wA(Σ1), Σ2). (B.31)

By the definition of the adaptive regret,

Amax(wA(Σ2), Σ1)− Amax(wA(Σ1), Σ1) ≥ K3∥wA(Σ2)−wA(Σ1)∥2, (B.32)

where K3 > 0 the last line follows because A(w, B, Σ) is strongly convex in w ∈ Wcvx

(in which the proof follows from Lemma B.7, particularly equations (B.14), (B.19), and
(B.20), because A(w, B, Σ) is a (positive) scalar multiple of Rmax(w, B, Σ) when B and Σ

are held fixed) and that Amax is the maximum of two strongly convex functions.
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It follows that

K3∥wA(Σ2)−wA(Σ1)∥2 ≤ Amax(wA(Σ2), Σ1)− Amax(wA(Σ1), Σ1)

= [Amax(wA(Σ2), Σ1)− Amax(wA(Σ2), Σ2)]

+ [Amax(wA(Σ2), Σ2)− Amax(wA(Σ1), Σ1)]

≤ |Amax(wA(Σ2), Σ1)− Amax(wA(Σ2), Σ2)|
+ |Amax(wA(Σ2), Σ2)− Amax(wA(Σ1), Σ1)|

≤ 2K2∥Σ1 − Σ2∥2,

where the first line follows from (B.32) and the last line follows from (B.29).

Therefore, the above shows that for any ε > 0, there exists δ = K3
2K2

ε2 > 0 such that for
any Σ1, Σ2 ∈ M and ∥Σ1 − Σ2∥2 < δ, ∥wA(B, Σ1)−wA(B, Σ2)∥2 < ε holds.

B.4 Additional details for the parameter space

B.4.1 Shape restrictions

In this subsection, I discuss details related to imposing shape restrictions in the pa-
rameter space. I have explained in Example 4.3 that shape restrictions are desirable in
empirical practice. I show that evaluating the maximum risk subject to the parameter
space that involves absolute values on b is the same as evaluating the parameter space
without absolute values.

First, consider shape restrictions in the form of Qb ≤ 0l, where Q ∈ Rl×q and 0l is a
vector of l zeros. The parameter space can be described as

S(B) = {b ∈ Rq : ∥b∥p ≤ B,Qb ≤ 0l}. (B.33)

For the purpose of computing the maximum risk (20), the set (B.33) on linear inequal-
ities on b also describes inequality constraints on the magnitude of b, i.e., inequality
constraints on |b|, as in the entrepreneurial spirit example in Example 4.3. More specifi-
cally, consider

Sabs(B) = {b ∈ Rq : ∥b∥p ≤ B,Q|b| ≤ 0l}, (B.34)

where |b| is the vector that takes the absolute value of each component in the vector
b. The following proposition shows the maximum risk over (B.34) is the same as the
maximum risk over linear inequalities in the form of (B.33). This simplifies computation.
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Proposition B.9. Consider the notations as defined in (20). Let p ≥ 1, B ≥ 0 and Q ∈ Rl×q.
In addition, let Saug(B) ≡ {b ∈ Rq : ∥b∥p ≤ B,Qb ≤ 0l, b ≥ 0q}. Suppose Saug(B) ̸= ∅.
Then,

max
b∈Sabs(B)

(w′b)2 = max
b∈Saug(B)

(w′b)2,

where Sabs(B) is defined in (B.34).

Proof of Proposition B.9. Let mabs ≡ maxb∈Sabs(B)(w
′b)2 and maug ≡ maxb∈Saug(B)(w

′b)2.

To begin with, note that for any b ∈ Saug(B), |b| = b since b ≥ 0q. Therefore,
Q|b| ≤ 0l. It follows that b ∈ Sabs(B) as well. Hence, maug ≤ mabs.

Next, for any b ∈ Sabs(B), Q|b| ≤ 0l by construction and |b| ≥ 0q. Hence, |b| ∈
Saug(B). Note that the objective is bounded above as follows

(w′b)2 = |w′b|2 ≤ (|w|′|b|)2 = (w′|b|)2,

where the inequality follows from the triangle inequality and the second equality follows
because w ∈ Wcvx, so w ≥ 0q. As a result, this means for each b ∈ Sabs(B), there exists
|b| ∈ Saug(B) such that the objective is weakly larger. Hence, mabs ≤ maug.

Combining the two parts gives mabs = maug.

The above proposition shows that although the two sets Sabs(B) and Saug(B) are
different, they lead to the same maximum value. Hence, the representation in (B.33) can
capture this case.

In general, the maximum misspecification further satisfies Assumption 4.9 because

M(B,w) = max
b∈S(B)

(w′b)2 = B2 max
b̃∈S(1)

(w′b̃)2 ≡ B2m(w), (B.35)

where m(w) ≡ maxb̃∈S(1)(w
′b̃)2 is convex in w and S(B) is as defined in (B.33).

B.4.2 A model of communication and subjective weights

Another concern that researchers may have is related to the communication of the
weighted average of treatment effects τ̂ to the reader. Readers may think that θ is
a weighted average of the treatment effects β, but have a different view on what the
weights should be. Then, the researcher’s decision has to take this communication issue
into account.
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The communication problem between the researcher and the reader can be studied
using the decision framework above. Suppose that θ = γ ′β, where γ ∈ Wcvx is a vector
of subjective weights of the readers that can be known or unknown to the researcher.
Here, I assume that the reader also wants an interpretable estimator, so γ also belongs
to the set Wcvx.

The modeling choice on γ depends on the context or the goal of the researcher. I
consider the following three cases on the restrictions on γ:

1. A known γ ∈ Wcvx.

2. An unknown γ ∈ Wcvx.

3. There is a known reference weight η ∈ Wcvx such that γ = η + δ, γ ∈ Wcvx,
δ ∈ Wcvx, ∥δ∥p ≤ D, and D ≥ 0.

In the above, Cases 1 and 2 can be viewed as special cases of Case 3. This is because
setting D = 0 in Case 3 corresponds to setting η = γ in Case 1. Setting a “sufficiently
large” value in D in Case 3 corresponds to allowing for any γ ∈ Wcvx as in Case 2. This
is formalized and discussed further in Proposition D.4 of the Appendix. In the following,
I consider the first case where γ ∈ Wcvx is known. The other cases are considered in
Appendix D.

When θ is a weighted average of β, (16) becomes

b ≡ β− (γ ′β)1q. (B.36)

Suppose the researcher is interested in bounding b using the ℓp-norm as in Example
4.2. The parameter space S(B) from (19) has to take (B.36) into account. Thus, I write the
parameter space for b as S0(B,γ) with γ also as an argument below, in light of (B.36):

S0(B,γ) ≡ {b ∈ Rq : ∥b∥p ≤ B, b = β− (γ ′β)1q for some β ∈ Rq}. (B.37)

Lemma D.1 shows that the parameter space (B.37) has an equivalent representation as

S1(B,γ) ≡ {b ∈ Rq : ∥b∥p ≤ B,γ ′b = 0}.

Thus, the communication problem can be modeled via the framework introduced
in Section B.4.1 on shape restrictions. This is because γ ′b = 0 is equivalent to the
restrictions γ ′b ≤ 0 and −γ ′b ≤ 0. As a result, the maximum risk for a given γ ∈ Wcvx
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can be written as follows using (B.35):

M(B,w,γ) = B2 max
b̃∈S1(1,γ)

(w′b̃)2. (B.38)

As before, (B.38) satisfies Assumption 4.9 on multiplicative separability as well. Shape
constraints as in Section B.4.1 can also be added to the parameter space S1(B,γ).

I provide further analysis and worked examples in Appendix D. The communication
and subjective weights aspect in my statistical decision-theoretic approach is also related
to models of scientific communication (such as Andrews and Shapiro (2021), Frankel
and Kasy (2022), and Kasy and Spiess (2024)), transparency (Andrews et al. (2020) and
the related discussion by Bonhomme (2020), Taber (2020), and Tamer (2020)).

B.5 Additional details for Example 4.8

Below, I return to the running example with the finite-sample model with two outcomes
for illustration. Suppose the Euclidean norm in S(B) is used to bound b = (b1, b2)

′.

B.5.1 Maximum risk

Since w1 + w2 = 1, the variance and maximum misspecification can be written as a
function of w1 ∈ [0, 1] as follows:

V(w1) = (1 + σ2
2 − 2ρσ2)w2

1 + 2(ρσ2 − σ2
2 )w1 + σ2

2 ,

M(B, w1) = B2∥(w1, 1 − w1)∥2
2 = B2(2w2

1 − 2w1 + 1) ≡ B2m(w1),
(B.39)

where I have further defined m(w1) ≡ 2w2
1 − 2w1 + 1 for further convenience later.

B.5.2 Minimax problem

Using the optimal weights in (23), the minimax risk is

R⋆(B) = Rmax(B, w⋆
1(B)) =


σ2

2 + B2 if σ2
2 − ρσ2 ≤ −B2,

1 + B2 if 1 − ρσ2 ≤ −B2,
(1−ρ2)σ2

2+(1+σ2
2 )B2+B4

1+σ2
2−2ρσ2+2B2 otherwise.

(B.40)
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B.5.3 Adaptive problem

Assume that B = [0, ∞] and ρσ2 < 1. The optimization problem for computing the
adaptive weight is

min
t,w1∈R

t,

s.t.
V(w1)

R⋆(0)
≤ t,

2(2w2
1 − 2w1 + 1) ≤ t,

w1 ≤ 1,

w1 ≥ 0,

(B.41)

where V(w1) is defined in (B.39). The Lagrangian is

L = t + λ1[R⋆(0)−1V(w1)− t] + λ2(4w2
1 − 4w1 + 2 − t) + λ3(w1 − 1) + λ4(−w1), (B.42)

where {λl}4
l=1 are the Lagrangian multipliers.

Recall from (B.39) that V(w1) = (1+ σ2
2 − 2ρσ2)w2

1 + 2(ρσ2 − σ2
2 )w1 + σ2

2 . Using (B.42),
the KKT conditions are as follows.

• Stationarity:

0 = 1 − λ1 − λ2, (B.43)

0 = λ1R⋆(0)−1[2(1 + σ2
2 − 2ρσ2)w1 + 2(ρσ2 − σ2

2 )] + λ2(8w1 − 4) + λ3 − λ4. (B.44)

• Primal feasibility:

(1 + σ2
2 − 2ρσ2)w2

1 + 2(ρσ2 − σ2
2 )w1 + σ2

2
R⋆(0)

− t ≤ 0, (B.45)

4w2
1 − 4w1 + 2 − t ≤ 0, (B.46)

w1 − 1 ≤ 0, (B.47)

−w1 ≤ 0. (B.48)

• Dual feasibility:

λ1, λ2, λ3, λ4 ≥ 0. (B.49)
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• Complementary slackness:

λ1

[
(1 + σ2

2 − 2ρσ2)w2
1 + 2(ρσ2 − σ2

2 )w1 + σ2
2

R⋆(0)
− t

]
= 0, (B.50)

λ2(4w2
1 − 4w1 + 2 − t) = 0, (B.51)

λ3(w1 − 1) = 0, (B.52)

λ4w1 = 0. (B.53)

Note that R⋆(0) > 0 for each of the three cases shown in (B.40) for B = 0.

Proof of (27) for no corner solution. I start to analyze the case when w⋆
1 = 0. In this

case, the implications on the KKT conditions are as follows.

• Implications on complementary slackness, i.e., (B.50) to (B.53):

At w⋆
1 = 0, the conditions become

λ1[σ
2
2 − R⋆(0)t] = 0, λ2(2 − t) = 0 and λ3 = 0. (B.54)

λ4 ≥ 0 is otherwise unrestricted.

• Implications on primal feasibility, i.e., (B.45) to (B.49):

At w⋆
1 = 0, the conditions (B.45) and (B.46) become

σ2
2 ≤ R⋆(0)t and 2 ≤ t. (B.55)

• Implications on stationarity, i.e., (B.43) and (B.44):

At w⋆
1 = 0 and (B.54), (B.43) remains unchanged, but (B.44) becomes

0 = 2λ1R⋆(0)−1(ρσ2 − σ2
2 )− 4λ2 − λ4

= λ1[2R⋆(0)−1(ρσ2 − σ2
2 ) + 4]− 4 − λ4, (B.56)

where the second equality uses (B.43) that λ2 = 1 − λ1.

Using the above implications on the KKT conditions, I consider different possibilities on
the Lagrangian multipliers. Note that λ1 ∈ [0, 1] by (B.43) and (B.49).

1. Suppose that λ1 = 0. Then, (B.56) requires that λ4 = −4, which violates (B.49).
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2. Suppose that λ1 = 1. The complementary slackness condition (B.54) requires

σ2
2 = R⋆(0)t. (B.57)

From (B.40), the expression for R⋆(0) depends on whether σ2
2 − ρσ2 ≤ 0 holds or

not.

(a) Assume σ2
2 − ρσ2 ≤ 0, so R⋆(0) = σ2

2 . Since (B.55) requires t ≥ 2, it violates
(B.57).

(b) Assume σ2
2 − ρσ2 > 0, so R⋆(0) = (1−ρ2)σ2

2
1+σ2

2−2ρσ2
. But ρ ∈ (−1, 1), (B.49) and (B.56)

lead to λ4 = 2R⋆(0)−1(ρσ2 − σ2
2 ) < 0, which is violated by the condition.

3. Suppose that λ1 ∈ (0, 1). Then, (B.43) gives λ2 ∈ (0, 1). The complementary
slackness condition (B.54) requires

σ2
2 = R⋆(0)t and t = 2. (B.58)

Similar to the previous case, I analyze based on the expression for R⋆(0) depending
on whether σ2

2 − ρσ2 ≤ 0 holds or not.

(a) Assume σ2
2 − ρσ2 ≤ 0, so that R⋆(0) = σ2

2 . This means σ2
2 = σ2

2 t, so t = 1 Thus,
(B.58) is violated.

(b) Asume σ2
2 − ρσ2 > 0. Then (B.49) and (B.56) require that

λ4 = λ1[2R⋆(0)−1(ρσ2 − σ2
2 ) + 4]− 4

= 2λ1R⋆(0)−1(ρσ2 − σ2
2︸ ︷︷ ︸

<0

) + 4(λ1 − 1︸ ︷︷ ︸
<0

)

< 0,

which violates dual feasibility (B.49).

It follows that there is no λ1 ≥ 0 such that the KKT conditions can be satisfied so w⋆
1 = 0

is not optimal.

Next, I analyze the case when w⋆
1 = 1. In this case, the implications on the KKT

conditions are as follows.

• Implications on complementary slackness, i.e., (B.50) to (B.53):
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At w⋆
1 = 1, the conditions become

λ1[1 − R⋆(0)t] = 0, λ2(2 − t) = 0 and λ4 = 0. (B.59)

λ3 ≥ 0 is otherwise unrestricted.

• Implications on primal feasibility, i.e., (B.45) to (B.49):

At w⋆
1 = 1, the conditions (B.45) and (B.46) become

1 ≤ R⋆(0)t and 2 ≤ t. (B.60)

• Implications on stationarity, i.e., (B.43) and (B.44):

At w⋆
1 = 1 and (B.59), (B.43) remains unchanged, but (B.44) becomes

0 = 2λ1R⋆(0)−1(1 − ρσ2) + 4λ2 + λ3

= λ1[2R⋆(0)−1(1 − ρσ2)− 4] + 4 + λ3, (B.61)

where the second equality uses (B.43) that λ2 = 1 − λ1.

Using the above implications on the KKT conditions, I consider different possibilities on
the Lagrangian multipliers.

1. Suppose that λ1 = 0. Then, (B.61) requires that λ3 = −4, which violates (B.49).

2. Suppose that λ1 = 1. The complementary slackness condition (B.59) requires

1 = R⋆(0)t, (B.62)

and (B.61) becomes

λ3 = −2R⋆(0)−1(1 − ρσ2). (B.63)

Note that R⋆(0) > 0. But by the assumption that ρσ2 < 1, it follows from (B.63)
that λ3 < 0. This violates dual feasibility (B.49).

3. Suppose that λ1 ∈ (0, 1). Then, (B.43) gives λ2 ∈ (0, 1). The condition (B.61) can be
further written as follows

2λ1R⋆(0)−1(1 − ρσ2︸ ︷︷ ︸
>0

) + 4(1 − λ1︸ ︷︷ ︸
>0

) + λ3 = 0, (B.64)
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The above implies that λ3 < 0 using the assumption that ρσ2 < 1. This violates
dual feasibility (B.49).

It follows that there is no λ1 ≥ 0 such that the KKT conditions can be satisfied, so w⋆
1 = 1

is not optimal.

Proof of the interior solution in (27). Suppose that w⋆
1 ∈ (0, 1). The KKT conditions are

given in (B.43) to (B.53). Note that the implications on the KKT conditions when w⋆
1 ∈

(0, 1) are as follows.

• Implications on complementary slackness, i.e., (B.50) to (B.53):

The conditions related to the Lagrangian multiplier for w1 ∈ [0, 1] become

λ3 = 0 and λ4 = 0. (B.65)

λ1, λ2 ≥ 0 are not further unrestricted.

• Implications on primal feasibility, i.e., (B.45) to (B.49):

They impose restrictions conditions on t.

(1 + σ2
2 − 2ρσ2)w2

1 + 2(ρσ2 − σ2
2 )w1 + σ2

2
R⋆(0)

≤ t and 4w2
1 − 4w1 + 2 ≤ t. (B.66)

• Implications on stationarity, i.e., (B.43) and (B.44):

(B.43) remains unchanged, but (B.44) becomes

0 = λ1R⋆(0)−1[2(1 + σ2
2 − 2ρσ2)w1 + 2(ρσ2 − σ2

2 )] + (1 − λ1)(8w1 − 4) (B.67)

where the equality uses (B.43) that λ2 = 1 − λ1. This can be rearranged as follows:

w1 =
λ1[R⋆(0)−1(σ2

2 − ρσ2)− 2] + 2
λ1[R⋆(0)−1(σ2

2 − 2ρσ2 + 1)− 4] + 4
≡ w⋆

1(λ1). (B.68)

The result in the example follows by changing λ1 to µ1.

B.6 Additional details for Remark 4.7

This subsection provides additional results for Remark 4.7. The following lemma charac-
terizes the minimax solution for the limiting case as B −→ ∞, and show that the optimal
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solution will tend to focus on minimizing m(w).

Lemma B.10. Let Assumption 4.9 hold and m(w) be strictly convex and continuous in w ∈
Wcvx. Then, as B −→ ∞,

w⋆(B) −→ arg min
w∈Wcvx

m(w),

where w⋆(B) is the solution to the minimax problem as defined in (22).

Proof of Lemma B.10. The set Wcvx is compact. Note that V(w) is continuous in w. In
addition, M(B,w) = maxb∈S(B)(w

′b)2 is continuous due to the Berge maximum theorem
(see, for instance, Aliprantis and Border (2006, Theorem 17.31)). It follows that V(w) and
m(w) are bounded on w ∈ Wcvx. In addition, let wm ≡ arg minw∈Wcvx

m(w). As such,
define CV ≡ maxw∈Wcvx |V(w)− V(wm)| ≥ 0. Hence, for any w ∈ Wcvx, it must be that
|V(w)− V(wm)| ≤ CV . In particular, the following must hold

V(w)− V(wm) ≥ −CV . (B.69)

For any δ > 0, let Wm(δ) ≡ {w ∈ Wcvx : ∥w−wm∥2 ≥ δ}. This is a set that is not in
a small neighborhood of wm. By the continuity and strict convexity of m(w), there must
exist εδ > 0 such that

m(w) ≥ m(wm) + εδ, (B.70)

for any w ∈ Wm(δ).

Recall the maximum risk function Rmax(B,w) defined in (20). For any w ∈ Wm(δ),

Rmax(B,w)− Rmax(B,wm) = V(w) + B2m(w)− V(wm)− B2m(wm)

= [V(w)− V(wm)] + B2[m(w)− m(wm)]

≥ −CV + B2εδ, (B.71)

where the inequality follows from (B.69) and (B.70).

Now, pick B0 =
√

CV
εδ

+ 1 > 0 such that −CV + B2
0εδ > 0. Using (B.71), this means for

any B ≥ B0, I have

Rmax(B,w)− Rmax(B,wm) ≥ −CV + B2εδ ≥ −CV + B2
0εδ > 0, (B.72)

for any w ∈ Wm(δ).

Recall that w⋆(B) is defined as the minimax solution as in (22). This implies that
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Rmax(B,w⋆(B)) ≤ Rmax(B,w) for any w ∈ Wcvx. In particular,

Rmax(B,w⋆(B)) ≤ Rmax(B,wm). (B.73)

Then for any B ≥ B0, (B.72) implies that w⋆(B) ∈ Wcvx\Wm(δ). This is because if
w⋆(B) ∈ Wm(δ), then Rmax(B,w⋆(B)) > Rmax(B,wm), contradicting (B.73).

The above have showed that for any δ > 0, there exists B0 such that for any B ≥ B0,
w⋆(B) ∈ Wcvx\Wm(δ), or equivalently, ∥w⋆(B) −wm∥2 < δ. Therefore, the proof is
complete.

The intuition is that as B becomes so large, the effect of not putting emphasis to the
information from the variance matrix is “negligible.” Hence, the researcher should focus
on minimizing m(w) instead of hedging against variance reduction.

The following corollary is a consequence of the lemma above. It shows that when the
ℓp-norm is used to restrict b for p ∈ (1, ∞), then the optimal weight as B −→ ∞ is to put
equal weights on the outcomes.

Corollary B.11. Consider the same assumptions and notations as in Lemma B.10. Suppose the
parameter space in (19) is used with the ℓp-norm with p ∈ (1, ∞) as in Example 4.2. Then,

lim
B→∞

w⋆(B) =
1
q
1q.

Proof of Corollary B.11. Let ℓp⋆-norm be the dual norm of the ℓp-norm. Then, m(w) =

∥w∥2
p⋆ where p⋆ = p

p−1 from Example 4.2. By the definition of ℓp⋆-norm, m(w) =

[∑
q
j=1 h(wj)]

2
p⋆ where h(wj) ≡ |wj|p

⋆
. Since w ∈ Wcvx, h(wj) = wp⋆

j for j = 1, . . . , q.

Let aj = 1 for j = 1, . . . , q. Then,

1
q

q

∑
j=1

h(wj) =
∑

q
j=1 ajh(wj)

∑
q
j=1 aj

≥ h

(
∑

q
j=1 ajwj

∑
q
j=1 aj

)
= h(q−1) = q−p⋆ ,

where the first inequality follows from Jensen’s inequality since h is convex (see, for
instance, Proposition 3.8 of Aragón et al. (2019)), and the second equality holds be-
cause ∑

q
j=1 wj = 1 for any w ∈ Wcvx. Since p⋆ ∈ (1, ∞), equality holds if and only

if wj are the same for all j = 1, . . . , q. Recall the support of w is Wcvx, it follows that
arg minw∈Wcvx

m(w) = 1
q1q.
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B.7 Alternative procedures for inference

In this section, I discuss alternative approaches for conducting inference around τ. Sec-
tion 4.5 focuses on conducting inference using FLCI around θ. This section examines
additional large-sample properties of the estimated weights by viewing τ̂ as estimators
estimated from the constrained optimization problems introduced in Sections 4.

In this subsection, I establish the large-sample properties for the weights obtained
from the minimax problem in (21) using an estimated weights. Let Σ̂n be a consistent
estimator of Σ and define

ŵn ≡ arg min
w∈Wcvx

R̂max,n(B,w) where R̂max,n(B,w) ≡ w′Σ̂nw+ M(B,w). (B.74)

The minimax problem (21) has a similar structure to Section 3.4.1 in that both ap-
proaches consider the same class of weights Wcvx. The difference arises from adding
the extra term M(B,w) to the objective. The results in this section can be viewed as an
extension to the results in Section A.7.4. I am going to impose Assumption A.25 for the
analysis. First, I consider the probability limit.

Proposition B.12. Let Assumption A.25 hold and consider a finite B ≥ 0. Consider ŵn as
defined in (B.74). Let w⋆(B) be the optimal solution to the minimax problem (21) as defined in
(22). Then, ŵn

p−→ w⋆(B).

Next, I show the limiting distribution below.

Proposition B.13. Consider the same notations and assumptions as in Proposition B.12. Let
w(ζ) be the optimal solution to the following program:

min
w∈Wcvx

[Rmax(w, B) + ζ ′w], (B.75)

where ζ ∈ Rq. Then,

√
n(ŵn −w⋆(B)) =

√
n
[
w
(

2(Σ̂n − Σ)w⋆(B)
)
−w⋆(B)

]
+ oP(1).

B.7.1 Supplemental lemmas and their proofs

Lemma B.14. Let Assumption A.25 hold. Consider (B.74). Let w⋆(B) be the optimal solution
to (21) as defined in (22). Define dn(w) ≡ R̂max,n(B,w)− Rmax(B,w) for a given finite B ≥ 0
and w ∈ Wcvx. Then, dn(w) is Lipschitz continuous and differentiable at w⋆(B).
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Proof of Lemma B.14. To begin with, note that dn(w) can be written as

dn(w) ≡ R̂max,n(B,w)− Rmax(B,w) = w′(Σ̂n − Σ)w. (B.76)

The above is differentiable at w⋆(B). For Lipschitz continuity, note that for any w1,w2 ∈
Wcvx,

|dn(w1)− dn(w2)| =
∣∣∣[w′

1(Σ̂n − Σ)w1]− [w′
2(Σ̂n − Σ)w2]

∣∣∣
= |(w1 +w2)

′(Σ̂n − Σ)(w1 −w2)|
≤ |w′

1(Σ̂n − Σ)(w1 −w2)|+ |w′
2(Σ̂n − Σ)(w1 −w2)|

≤ ∥w1∥2∥Σ̂n − Σ∥F∥w1 −w2∥2 + ∥w2∥2∥Σ̂n − Σ∥F∥w1 −w2∥2

≤ 2∥Σ̂n − Σ∥F∥w1 −w2∥2,

where the first inequality follows from the triangle inequality, the second inequality fol-
lows from the Cauchy-Schwarz inequality, the third inequality uses maxw∈Wcvx ∥w∥2 ≤
1. Hence, dn is Lipschitz continuous.

Lemma B.15. Consider the same notations and assumptions as in Lemma B.14. Then,

∥∇dn(w)∥2 = OP(n−1/2).

Proof of Lemma B.15. From (B.76),

∇dn(w) = 2(Σ̂n − Σ)w. (B.77)

Hence,
∥∇dn(w)∥2 ≤ 2∥Σ̂n − Σ∥F (B.78)

where the inequality follows from the Cauchy-Schwarz inequality and that ∥w∥2 ≤ 1.
Here, Σ̂n − Σ = OP(n−1/2) by Assumption A.25(c). Thus, the result follows.

Lemma B.16. Consider the same notations and assumptions as in Lemma B.14. Then, there
exists a neighborhood W of w⋆(B) such that

sup
w∈W

∥∇dn(w)−∇dn(w⋆(B))∥2

n−1/2 + ∥w−w⋆(B)∥2
= oP(1).
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Proof of Lemma B.16. To begin with, note that

∥∇dn(w)−∇dn(w
⋆(B))∥2 = ∥2(Σ̂n − Σ)(w−w⋆(B))∥2

≤ 2∥Σ̂n − Σ∥F∥w−w⋆(B)∥2, (B.79)

where the first equality uses (B.77) and the second line uses Cauchy-Schwarz inequality.

Hence,

∥∇dn(w)−∇dn(w⋆(B))∥2

n−1/2 + ∥w−w⋆(B)∥2
≤ 2

∥Σ̂n − Σ∥F∥w−w⋆(B)∥2

n−1/2 + ∥w−w⋆(B)∥2
≤ 2∥Σ̂n − Σ∥F, (B.80)

where the first inequality uses (B.79) and the second inequality uses ∥w−w⋆(B)∥2
n−1/2+∥w−w⋆(B)∥2

≤
1. The result follows from Assumption A.25 that Σ̂n is a consistent estimator of Σ. The
neighborhood can be taken to be a small ball around w⋆(B).

Lemma B.17. Consider the same notations and assumptions as in Proposition B.12. Let w(ζ) be
the optimal solution to (B.75). There exists a neighborhood W of w⋆(B) and a positive constant
Cw such that for any ζ in a neighborhood of 0q, (B.75) has an optimal solution w(ζ) ∈ W and

Rmax(w, B) + ζ ′[w−w(ζ)] ≥ Rmax(w(ζ), B) + Cw∥w−w(ζ)∥2
2, (B.81)

for any w ∈ Wcvx ∩W.

Proof of Lemma B.17. To begin with, the objective of (B.75) is strictly convex in w ∈
Wcvx. It follows that the optimal solution w(ζ) is unique. The minimum eigenvalue
of Σ is also bounded below from 0 because Σ is assumed to be positive definite in
Assumption A.25(b). Note that Rmax(w, B) = f1(w) + f2(w) where f1(w) = M(B,w)

is convex in w, f2(w) = w′Σw is twice continuously differentiable, with ∇2 f2(w) = Σ.
It follows from pages 832 to 833 of Shapiro (1993) that the statements of this lemma
hold.

B.7.2 Proofs

Proof of Proposition B.12. Write Mn(w) ≡ −R̂max,n(w, B) and M(w) ≡ −Rmax(w, B)
for any w ∈ Wcvx and a finite B ≥ 0. I also write w0 ≡ w⋆(B). I show that the
proposition holds by verifying the assumptions in Theorem 2.12(i) of Kosorok (2008).

First, suppose that for some sequence in {ŵn} ∈ Wcvx, lim infn→∞ M(ŵn) ≥ M(w0)

but ∥ŵn −w0∥2 −→ 0 does not hold. This means there exists ε > 0 and a subsequence
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{ŵnk} such that
∥ŵnk −w0∥2 ≥ ε. (B.82)

Note that Rmax(w, B) is strictly convex in w ∈ Wcvx. As a result, using a similar argu-
ment as in (B.14) and (B.19), and noting that w0 is the optimal solution to the minimax
problem, it follows that for any w ∈ Wcvx, Rmax(w, B) ≥ Rmax(w0, B) + κ∥w−w0∥2

2 for
some κ > 0. Such κ can be taken to be 1

2 λmin(Σ) where λmin(Σ) is the smallest eigenvalue
of Σ. Here, κ > 0 because Σ is positive definite. This means

−M(ŵnk) ≥ −M(w0) + κ∥ŵnk −w0∥2
2 ≥ −M(w0) + κε2, (B.83)

where the first inequality follows from the preceding discussion on strong convexity and
the second inequality uses (B.82). Rearranging (B.83) gives

M(w0)− κε2 ≥ M(ŵnk).

This implies that M(w0)− κε2 ≥ lim infk→∞ M(ŵnk) ≥ lim infn→∞ M(ŵn). This contra-
dicts lim infn→∞ M(ŵn) ≥ M(w0). Hence, the hypothesis in Theorem 2.12 of Kosorok
(2008) holds.

Next, Mn(ŵn) = supw∈Wcvx
Mn(w) by property of the minimax problem. In addition,

for any w ∈ Wcvx,

|Mn(w)− M(w)| = |w′(Σ̂n − Σ)w| ≤ ∥Σ̂n − Σ∥F∥w∥2
2 ≤ ∥Σ̂n − Σ∥F.

It is assumed that Σ̂n
p−→ Σ by Assumption A.25. Hence, ∥Σ̂n −Σ∥F = oP(1). As a result,

this implies that supw∈Wcvx
|Mn(w)− M(w)| p−→ 0. The assumptions in Theorem 2.12(i)

of Kosorok (2008) also hold. Hence, the consistency result of this proposition follows.

Proof of Proposition B.13. With the given assumptions, (21) has a unique optimal solu-
tion following the discussion in (4.3). Hence, Assumption A1 of Shapiro (1993) holds.
Next, Assumptions A3, B1 to B3 of Shapiro (1993) also hold from Lemmas B.14 to B.17.
ŵn is also consistent for w⋆(B) by Proposition B.12. It follows from Theorem 2.1 of
Shapiro (1993) that

ŵn = w(∇dn(w
⋆(B))) + oP(n−1/2). (B.84)

Since w⋆(B) = w(0q), I obtain the following from (B.84):

√
n(ŵn −w⋆(B)) =

√
n
[
w(∇dn(w

⋆(B)))−w(0q)
]
+ oP(1),
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where ∇dn(w⋆(B)) is given in (B.77).
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C Details on computation

This section studies how the minimax and adaptive approaches can be implemented in
practice to compute optimal weights to average the treatment effects.

C.1 Minimax approach

The minimax problem in (21) is strictly convex in w ∈ Wcvx. Hence, convex optimization
algorithms can be applied. With specific choices of norms and parameter spaces, the
problem of finding the minimax optimal weights can be written as a quadratic program,
so that modern solvers such as Gurobi, can be immediately applied.

In the following subsections, I discuss computation for the parameter spaces consid-
ered in Section 4.2 and how the computational problems can be written as one optimiza-
tion problem. I consider computation with a finite B > 0.

C.1.1 Computation for parameter space that bounds misspecification

To begin with, suppose that the researcher places a bound on the misspecification as
in Example 4.2. When the ℓ1-norm is used in the parameter space (19), the maximum
misspecification can be written as M(B,w) = B2∥w∥2

∞ = B2 maxj=1,...,q w2
j because wj ∈

[0, 1] for j = 1, . . . , q. Then, the optimization problem becomes the following quadratic
program with linear constraints:

min
w∈Rq, t∈R

(w′Σw+ B2t2),

s.t. w ≤ t1q,

w′1q = 1,

w ≥ 0q,

where the auxiliary variable t is used to constrain that ∥w∥2
∞ = maxj=1,...,q w2

j equals the
smallest t such that t ≥ wj for j = 1, . . . , q (see, for instance, Bertsimas and Tsitsiklis
(1997, page 17)).

Similarly, when the ℓ2-norm is used in the parameter space as in Example 4.2, then
M(B,w) = B2∥w∥2

2. The optimization problem becomes the following quadratic pro-
gram with linear constraints:

min
w∈Rq

w′(Σ + B2Iq)w,
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s.t. w′1q = 1,

w ≥ 0q.

C.1.2 Computation for parameter space that has shape restrictions

Next, suppose shape restrictions are imposed as in Example 4.3 or Section B.4.1. Con-
sider the shape constraints as described in (B.33). Then, the minimax problem can be
written as

min
w∈Wcvx, t∈R

(w′Σw+ t2),

s.t. max

{(
max
b̃∈S(B)

w′b

)
,

(
max
b̃∈S(B)

−w′b

)}
≤ t.

(C.1)

The inequality constraint can be further written as two constraints maxb∈S(B)w
′b ≤ t

and maxb∈S(B)(−w′b) ≤ t. Since S(B) ̸= ∅ is assumed in Section 4.2, Slater’s condition
(Boyd and Vandenberghe, 2004, Chapter 5.2.3) is satisfied when there is a point such
that strict inequality holds. Assuming that this is true, it follows that the program can
be written as

max
b∈S(B)

w′b = min
µ≥0l

{
max

∥b∥p≤B
[w′b+µ′(r−Qb)]

}

= min
µ≥0l

[
µ′r+ max

∥b∥p≤B
(w−Q′µ)′b

]
= min

µ≥0l

(
µ′r+ B∥w−Q′µ∥p⋆

)
, (C.2)

where the first equality follows from the corresponding Lagrange dual problem (see,
for instance, Boyd and Vandenberghe (2004, Chapter 5)) and the third equality follows
from properties of dual norm (see, for instance, Boyd and Vandenberghe (2004, Chapter
A.1.6)) with the ℓp⋆-norm being the dual norm for the ℓp-norm. Similarly, I have

max
b∈S(B)

(−w′b) = min
µ≥0l

(
µ′r+ B∥w+Q′µ∥p⋆

)
(C.3)

Since both (C.2) and (C.3) are optimization problems over their corresponding La-
grange multipliers, it follows that the minimax problem under the shape-constrained
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parameter space (B.33) can be written as

min
w∈Rq, t∈R, µ1∈Rl , µ2∈Rl

(w′Σw+ t2),

s.t. µ′
1r+ B∥w−Q′µ1∥p⋆ ≤ t,

µ′
2r+ B∥w+Q′µ2∥p⋆ ≤ t,

w′1q = 1,

w ≥ 0q,

µ1 ≥ 0l,

µ2 ≥ 0l.

(C.4)

When the ℓ2-norm is used in the parameter space in (B.33), problem (C.4) again be-
comes a quadratic problem.

C.1.3 Computation for parameter space on the communication model

The exact computation procedure depends on modeling assumption on γ ∈ Wcvx. Sup-
pose that γ ∈ Wcvx is known (i.e., Case 1 of Section B.4.2). This can be formulated as
a shape-constrained problem as in Section B.4.1. Therefore, the optimization program

(C.4) can still be applied by setting Q =

(
γ ′

−γ ′

)
.

C.2 Adaptive approach

As in Section C.1, computing the optimally adaptive weight for (25) can be formulated as
a single convex optimization problem. This is because the adaptive regret is a maximum
of two convex (or strictly convex) functions in w ∈ Wcvx over a compact set. In addition,
the optimization problem for the adaptive weights has the following epigraph form (see,
for instance, Boyd and Vandenberghe (2004, Chapter 4)):

min
w∈Rq, t∈R

t,

s.t. A(B,w) ≤ t,

A(B,w) ≤ t,

w′1q = 1,

w ≥ 0q.

(C.5)
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Similar to Section C.1, I discuss computation for different parameter spaces consid-
ered in Section 4.2, and how formulating them as a single optimization problem that can
readily apply modern solvers is possible.

Remark C.1. With the penalized formulation discussed in Remark 4.12, the optimization
problem can be modified slightly from (C.5) as follows:

min
w∈Rq, t∈R

t,

s.t. A(B,w) + κ∥w∥2
2 ≤ t,

A(B,w) + κ∥w∥2
2 ≤ t,

w′1q = 1,

w ≥ 0q,

for κ > 0. ■

C.2.1 Computation for parameter space that bounds misspecification

Suppose that the researcher places a bound on the misspecification as Example 4.2. Then,
the adaptive regret at a specific B ≥ 0 and w ∈ Wcvx can be written as A(B,w) =
w′Σw+B2∥w∥2

p⋆

R⋆(B) using (20) and (24). Therefore, problem (C.5) can be further written as

min
w∈Rq, t∈R

t,

s.t. w′Σw+ B2∥w∥2
p⋆ ≤ tR⋆(B),

w′Σw+ B2∥w∥2
p⋆ ≤ tR⋆(B),

w′1q = 1,

w ≥ 0q.

(C.6)

In the above, note that R⋆(B) and R⋆(B) are the minimax risks that are inputs to the
program. When the ℓ2-norm is used in (19), then p⋆ = 2, so (C.6) becomes a quadratic
program. This is because the objective and the constraint for w ∈ Wcvx are linear, the
two inequality constraints are convex quadratic functions.

C.2.2 Computation for parameter space that has shape restrictions

Suppose shape restrictions are imposed as in Section B.4.1 with the parameter space as
in (B.33). A similar technique involving epigraph and Lagrangian dual formulation as in
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Section C.1.2 can be applied. Therefore, problem (C.5) can be further written as follows

min
w∈Rq, t∈R, µ1,1,µ1,2,µ2,1,µ2,2∈Rl

u1,1,u1,2,u2,1,u2,2∈R+

t,

s.t. w′Σw+ u2
1,1 ≤ tR⋆(B),

w′Σw+ u2
1,2 ≤ tR⋆(B),

µ′
1,1r+ B∥w−Q′µ1,1∥p⋆ ≤ u1,1,

µ′
1,2r+ B∥w+Q′µ1,2∥p⋆ ≤ u1,2,

w′Σw+ u2
2,1 ≤ tR⋆(B),

w′Σw+ u2
2,2 ≤ tR⋆(B),

µ′
2,1r+ B∥w−Q′µ2,1∥p⋆ ≤ u2,1,

µ′
2,2r+ B∥w+Q′µ2,2∥p⋆ ≤ u2,2,

w′1q = 1,

w ≥ 0q,

µ1,1,µ1,2,µ2,1,µ2,2 ≥ 0l.

(C.7)

Similar to (C.6), R⋆(B) and R⋆(B) are the minimax risks that are inputs to the pro-
gram. When the ℓ2-norm is used in (B.33), then p⋆ = 2, so (C.7) becomes a quadratic
program.

C.2.3 Computation for parameter space on ambiguity in communication

The exact computation procedure depends on the modeling assumption of γ ∈ Wcvx.
Suppose that γ ∈ Wcvx is known (i.e., Case 1 of Section B.4.2). This can be formulated
as a shape-constrained problem as in Section B.4.1. Therefore, the optimization program
(C.7) can still be applied by setting Q as in Section C.1.3.
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D Communication and subjective weights

D.1 Some preliminary results for the finite-sample model

Recall from (15) that β̂ ∼ N(β, Σ) where Σ is known. The misspecification is captured by
b = β − θ1q. The additional restriction in this section is that θ = γ ′β, where γ ∈ Wcvx.
Thus, the vector of bias can be written as

b = β− (γ ′β)1q. (D.1)

I explore various restrictions on γ in this section.

The following lemma is helpful in connecting with the previous results.

Lemma D.1. Consider B ≥ 0, γ ∈ Wcvx, and the following sets

S0(B,γ) ≡ {b ∈ Rq : ∥b∥p ≤ B, b = β− (γ ′β)1q for some β ∈ Rq},

S1(B,γ) ≡ {b ∈ Rq : ∥b∥p ≤ B,γ ′b = 0}.

Then, S0(B,γ) = S1(B,γ).

Proof of Lemma D.1. For any x ∈ S0(B,γ), there exists β ∈ Rq such that x = β −
(γ ′β)1q. Hence,

γ ′x = γ ′β− γ ′β(γ ′1q) = γ ′β− γ ′β = 0,

because γ ∈ Wcvx. In addition, ∥x∥p ≤ B since x ∈ S0(B,γ). It follows that x ∈ S1(B,γ).
This means S0(B,γ) ⊆ S1(B,γ).

Now consider any x ∈ S1(B,γ) and t ∈ R. Let y ≡ x+ t1q. Then,

y − (γ ′y)1q = x+ t1q − (γ ′x+ tγ ′1q)1q = x+ t1q − t1q = x,

where the second equality holds because γ ′x = 0 as x ∈ S1(B,γ). Since ∥x∥p ≤ B also
holds, it follows that x ∈ S0(B,γ). This means S1(B,γ) ⊆ S0(B,γ). Therefore, the proof
is complete.

The above lemma is useful in that under the model (15), (D.1) and that ∥b∥p ≤ B,
finding the “worst-case b” does not require searching over β ∈ Rq as well. It only
requires an orthogonality condition γ ′b = 0.
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D.2 Known γ

This corresponds to Case 1 of Section B.4.2. Suppose γ ∈ Wcvx is known to the re-
searcher. In this case, the maximum risk is a function of w ∈ Wcvx (to be chosen) by the
minimax/adaptive problem and a known γ ∈ Wcvx.

In this and the later subsection, I focus on using the ℓp norm to restrict b. In addition,
I will be using the orthogonal restriction version of the parameter space (i.e., the space
S1(B,γ)) in Lemma D.1. In this subsection of a known γ ∈ Wcvx, I will write the
parameter space as

S1(B,γ) = {b ∈ Rq : ∥b∥p ≤ B,γ ′b = 0}, (D.2)

for some p ≥ 1. Shape restrictions, as in Examples 4.3, can be incorporated if needed.

Using the risk function in (18), the maximum risk is given by

Rmax(B,w,γ) = max
b∈S1(B,γ)

[w′Σw+ (w′b)2]

= w′Σw+ max
b∈S1(B,γ)

(w′b)2

≡ V(w) + M(B,w,γ), (D.3)

where V(w) ≡ w′Σw and M(B,w,γ) ≡ maxb∈S1(B,γ)(w
′b)2.

Next, let w̃ ≡ w− w′γ
∥γ∥2

2
γ. Then, for any b ∈ S1(B,γ),

w′b = w̃′b+
(w′γ)(γ ′b)

∥γ∥2
2

= w̃′b, (D.4)

where the second equality follows because γ ′b = 0 for any b ∈ S1(B,γ).

Let the ℓp⋆-norm be the dual norm of the ℓp-norm that satisfies 1
p +

1
p⋆ = 1. Then,

M(B,w,γ) = max
b∈S1(B,γ)

(w′b)2 = max
b∈S1(B,γ)

(w̃′b)2 = B2 max
b̃∈S1(1,γ)

(w̃′b̃)2 (D.5)

where the first equality uses the definition of the maximum risk in (D.3), the second
equality uses (D.4), and the third equality reparameterized b by defining b̃ such that
Bb̃ = b and that b̃ ∈ S1(1,γ). In the above, the objective (w̃′b̃)2 = b̃′(w̃w̃′)b̃ is convex
in b̃. In addition, the set S1(1,γ) is nonempty and compact. Hence, by Bauer’s max-
imum principle (see, for instance, Niculescu and Persson (2018, Corollary A.3.3)), the
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supremum is attained at an extreme point of the set S1(1,γ).

Note that from (D.5), the maximum bias function is multiplicatively separable in that
it can be written as

M(B,w,γ) = B2m(w,γ), (D.6)

where m(w,γ) ≡ maxb̃∈S1(1,γ)(w̃
′b̃)2 = maxb̃∈S1(1,γ)(w

′b̃)2 using (D.4).

To illustrate the solution to the minimax problem, I consider an example with two
outcomes below.

Example D.2 (Known γ). Suppose q = 2 and that (β̂1, β̂2) are normally distributed as in
Example 4.8. Let w ≡ (w1, w2)

′ and γ ≡ (γ1, γ2)
′. Since w,γ ∈ Wcvx, the weights can be

written as w = (w1, 1 − w1)
′ and γ = (γ1, 1 − γ1)

′. Assume that the ℓ2-norm is used in
S(B,γ) so that the dual norm is also the ℓ2-norm. Then,

w̃ = w− w′γ

∥γ∥2
2
γ =

γ1 − w1

γ2
1 + (1 − γ1)2

(
γ1 − 1

γ1

)
. (D.7)

Using the expression of w̃ in (D.7), the ℓ2-norm is given by

∥w̃∥2
2 =

(γ1 − w1)
2

γ2
1 + (1 − γ1)2

=
w2

1 − 2w1γ1 + γ2
1

γ2
1 + (1 − γ1)2

. (D.8)

Using (D.6) and (D.8),

M(B, w1, γ1) = B2∥w̃∥2
2 =

B2(w2
1 − 2w1γ1 + γ2

1)

γ2
1 + (1 − γ1)2

. (D.9)

Together with the expression of V(w1) given in (B.39), the minimax problem under
maximum risk (D.3) can be written as follows

R⋆(B, γ1) = min
w1∈[0,1]

Rmax(B, w1, γ1),

where

Rmax(B, w1, γ1)

= (1 + σ2
2 − 2ρσ2)w2

1 + 2(ρσ2 − σ2
2 )w1 + σ2

2 +
B2(w2

1 − 2w1γ1 + γ2
1)

γ2
1 + (1 − γ1)2

.
(D.10)
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The first-order condition for (D.10) with respect to w1 leads to

w⋆
1,int(B, γ1) =

σ2
2 − ρσ2 +

B2γ1
γ2

1+(1−γ1)2

1 + σ2
2 − 2ρσ2 +

B2

γ2
1+(1−γ1)2

. (D.11)

The optimal solution w⋆
1(B, γ1) to the minimax problem above is

w⋆
1(B, γ1) =


0 if B2γ1 ≤ [γ2

1 + (1 − γ1)
2](ρσ2 − σ2

2 ),

1 if B2(1 − γ1) ≤ (ρσ2 − 1)[γ2
1 + (1 − γ1)

2],

w⋆
1,int(B, γ1) otherwise.

(D.12)

Below are some observations from the optimal solution w⋆
1(B, γ1) in (D.12). First,

consider B = 0. This corresponds to the case that b1 = b2 = 0. The interior weight in

(D.11) becomes w⋆
1,int(0,γ) =

σ2
2−ρσ2

1+σ2
2−2ρσ2

. This coincides with the optimal weight in (23)

when B = 0 in minimizing variances. If the DGP satisfies σ2 − ρσ2 ≤ 0, then it is optimal
to set w⋆

1(0, γ1) = 0 because the second treatment effect is more precise.

As B increases, it may not be optimal to place all weights on one of the treatment
effects even if one is noisier than the other. When B > 0, the optimal weight considers
both variances and the bias due to w1 not matching γ1.

As B −→ ∞, the optimal weights are such that limB→∞ w⋆
1(B, γ1) = γ1. This means

choosing w to match γ. This follows because, as the bias of the treatment effects can
grow to infinity, the loss of not matching the true γ also grows to infinity. △

The above example demonstrates that even if θ is a known weighted average of treat-
ment effects, it is not always optimal to choose w to match γ because the true mean β is
unknown.

D.3 Unknown γ

This corresponds to Case 2 of Section B.4.2 that assumes γ ∈ Wcvx is unknown to the
researcher. As discussed in Lemma D.1. I will write the parameter space as

S2(B) = {(b,γ) ∈ R2q : ∥b∥p ≤ B,γ ′b = 0,γ ∈ Wcvx}, (D.13)
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for some p ≥ 1. Here, the maximum risk is maximizing over b ∈ S(B) and γ ∈ Wcvx as
follows:

Rmax(B,w) = max
(b,γ)∈S2(B)

R(w,γ,β)

= w′Σw+ max
(b,γ)∈S2(B)

(w′β)2

≡ V(w) + M(B,w), (D.14)

where V(w) ≡ w′Σw and M(B,w) ≡ max(b,γ)∈S2(B)(w
′b)2.

Similar to Section D.2, I can reparameterize b = Bb̃ so that the maximum bias squared
can be written as

M(B,w) = B2 max
(b̃,γ)∈S2(1)

(w′b̃)2 ≡ B2m(w), (D.15)

where m(w) = max(b̃,γ)∈S2(1)
(w′b̃)2. Numerical methods can be used to compute m(w).

Using (D.15), the minimax problem is

min
w∈W

Rmax(B,w). (D.16)

To illustrate the solution to the minimax problem (D.16), I consider an example with
two outcomes below.

Example D.3 (Unknown γ). Consider the same setup and notations as in Example D.2,
except that the minimax problem (D.16) is considered.

Recall that (D.9) gives the maximum misspecification for a given B ≥ 0, w1 ∈ [0, 1]
and γ1 ∈ [0, 1]. The maximum misspecification in (D.15) when γ1 is unknown becomes

M(B, w1) ≡ max
γ1∈[0,1]

M(B, w1, γ1) = B2 max
γ1∈[0,1]

w2
1 − 2w1γ1 + γ2

1
γ2

1 + (1 − γ1)2
. (D.17)

Since m(w1, γ1) ≡ w2
1−2w1γ1+γ2

1
γ2

1+(1−γ1)2 is continuous in γ1 for any given w1 ∈ [0, 1], the ex-

tremum value theorem states that the maximum is achieved in [0, 1]. In the following, I
show that

M(B, w1) = B2 max{w2
1, (1 − w1)

2}. (D.18)
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This means I want to show that the maximum cannot be achieved in (0, 1). Note that

∂m(w1, γ1)

∂γ1
=

2(γ1 − w1)[(2w1 − 1)γ1 + (1 − w1))

[γ2
1 + (1 − γ1)2]2

.

Hence, the critical points can be γ1 = w1 or γ1 = w1−1
2w1−1 . When γ1 = w1, then

m(w1, w1) = 0. But m(w1, γ1) ≥ 0, so m(w1, 0), m(w1, 1) ≥ m(w1, w1). Now consider
γ1 = w1−1

2w1−1 . Then, for any w1 ∈ [0, 1], the critical point γ1,c(w1) ≡ w1−1
2w1−1 can only be in-

side [0, 1] when w1 = 0 and w1 = 1. To see this, first note that γ′
1,c(w1) =

2w1−1−2(w1−1)
(2w1−1)2 =

1
(2w1−1)2 , so that γ′

1,c(w1) > 0 for w1 ∈ [0, 1]. In addition, limw1→0.5+ γ1,c(w1) = −∞ and
limw1→0.5− γ1,c(w1) = +∞. At w1 = 0, γ1,c(0) = 1. Then, γ1,c(w1) ≥ 1 for w1 ∈ [0, 0.5].
At w1 = 1, γ1,c(1) = 0. Then, γ1,c(w1) ≤ 0 for w1 ∈ [0.5, 1]. Therefore, (D.19) holds.

It follows that the maximum risk is

Rmax(B, w1) ≡ V(w1) + B2 max{w2
1, (1 − w1)

2}. (D.19)

To compute the optimal weights, there are two cases to consider depending on the value
of w1. First, suppose that w1 ∈ [0, 1

2), so that max{w2
1, (1 − w1)

2} = (1 − w1)
2. Using

(D.19) with the expression of V(w1) given in (B.39), the minimax problem can be written
as follows

R⋆(B) = min
w1∈[0, 1

2 ]
[(1 + σ2

2 − 2ρσ2)w2
1 + 2(ρσ2 − σ2

2 )w1 + σ2
2 + B2(1 − w1)

2]. (D.20)

The optimal solution to (D.16) is given by

w⋆
1,1(B) =


0 if σ2

2 − ρσ2 ≤ −B2,
1
2 if σ2

2 − 1 ≥ −B2,
σ2

2−ρσ2+B2

1+σ2
2−2ρσ2+B2 otherwise.

(D.21)

In the above, the interior solution is obtained from taking first-order conditions. The
boundary solution follows from analyzing when the boundaries are hit and from noting
that 1 + σ2

2 − 2ρσ2 + 2B2 ≥ (1 − σ2)
2 + 2B2 ≥ 0.

The way how B affects w⋆
1,1(B) is similar to Example D.2. When B = 0, the solution

w⋆
1,1(0) focuses on variance minimization as long as w1 is inside the domain [0, 1

2 ]. As B
increases, the optimal weight takes the bias into account.

Now, suppose w1 ∈ (1
2 , 1], so that max{w2

1, (1 − w1)
2} = w2

1. Using (D.19) with the
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expression of V(w1) given in (B.39), the minimax problem can be written as follows

R⋆(B) = min
w1∈[ 1

2 ,1]
[(1 + σ2

2 − 2ρσ2)w2
1 + 2(ρσ2 − σ2

2 )w1 + σ2
2 + B2w2

1]. (D.22)

The optimal solution to (D.16) is given by

w⋆
1,2(B) =


1
2 if 1 − σ2

2 ≥ −B2,

1 if 1 − ρσ2 ≤ −B2,
σ2

2−ρσ2
1+σ2

2−2ρσ2+B2 otherwise.

(D.23)

Based on the optimal solutions in (D.21) and (D.23), the optimal solution to the mini-
max problem minw1∈W Rmax(B, w1) is w⋆

1,j⋆(B) where j⋆ = arg minj=1,2 Rmax(B, w⋆
1,j(B)).

△

D.4 Reference weight

This corresponds to Case 3 of Section B.4.2, where I assume that there exists a known
reference weight η ∈ Wcvx such that γ = η + δ, γ ∈ Wcvx, ∥δ∥p ≤ D, and D ≥ 0.
This can be interpreted as a researcher who believes that a certain vector of weights η

is likely to be the true weights on β for θ, but there is some ambiguity around η. The
vector δ represents such ambiguity, and the norm of δ is bounded above by some D ≥ 0.
Therefore, the parameter space can be written as

S3(B, D,η)

= {(b,γ) ∈ R2q : ∥b∥p ≤ B, ∥δ∥p ≤ D,γ = η + δ ∈ Wcvx, (η + δ)′b = 0},
(D.24)

where B, D ≥ 0 and η ∈ Wcvx.

The following proposition summarizes that the two cases discussed in Sections D.2
and D.3 can be viewed as special cases of the general “reference weight” case.

Proposition D.4. Let B ≥ 0 and η0 ∈ Wcvx be given. Consider the notations and parameter
spaces described in (D.2), (D.13), and (D.24).

(a) If D = 0, then

S3(B, 0,η0) = {(b,γ) ∈ R2q : b ∈ S1(B,η0),γ = η0}.
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(b) If D ≥ D where D ≡ maxy∈Wcvx ∥y − η0∥p, then

S3(B, D,η0) = S2(B).

Proof of Proposition D.4(a). Suppose that D = 0, this implies that δ = 0q. Hence,
γ + δ = γ = η0. This means S3(B, D,η) in (D.24) becomes

S3(B, 0,η0) = {(b,γ) ∈ R2q : ∥b∥p ≤ B, ∥δ∥p ≤ 0,γ = η0 + δ ∈ Wcvx, (η0 + δ)′b = 0}
= {(b,γ) ∈ R2q : ∥b∥p ≤ B,γ = η0 ∈ Wcvx,η′

0b = 0}
= {(b,γ) ∈ R2q : b ∈ S1(B,η0),γ = η0},

as desired, where S1(B,η0) is given in (D.2).

Proof of Proposition D.4(b). Let S2(B) be a given in (D.13). For any (b,γ) ∈ S3(B, D,η0),
I have γ ′b = 0, γ ∈ Wcvx and ∥b∥p ≤ B by construction. Hence, (b,γ) ∈ S2(B). This
shows that S3(B, D,η0) ⊆ S2(B).

Next, for any (b,γ) ∈ S2(B), write δγ ≡ γ − η0. Then, by definition, it must be that
∥δγ∥p = ∥γ − η0∥p ≤ maxy∈Wcvx ∥y − η0∥p ≤ D. In addition, ∥b∥p ≤ B, γ ∈ Wcvx and
γ ′b = 0 by the definition of S2(B). It follows that (b,γ) ∈ S3(B, D,η0). This shows that
S2(B) ⊆ S3(B, D,η0). Hence, the proof is complete.

Using the parameter space given in (D.24), the minimax problem is

R⋆(B, D,η) ≡ min
w∈Wcvx

Rmax(B, D,w,η), (D.25)

where the maximum risk is given by

Rmax(B, D,w,η) = max
(b,γ)∈S3(B,D,η)

[
w′Σw+ (w′b)2

]
= w′Σw+ max

(b,γ)∈S3(B,D,η)
(w′b)2

≡ V(w) + M(B, D,w,η), (D.26)

where V(w) ≡ w′Σw and M(B,w,γ) ≡ max(b,γ)∈S3(B,D,η)(w
′b)2.

Similar to Sections D.2 and D.3, I can reparameterize b = Bb̃ so that the maximum
bias squared can be written as

M(B, D,w,η) = B2 max
(b̃,γ)∈S3(1,D,η)

(w′γ)2 ≡ B2m(w, D,η), (D.27)
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where m(w, D,η) = max(b̃,γ)∈S3(1,D,η)(w
′b̃)2.

To illustrate the solution to the minimax problem, I consider an example with two
outcomes below.

Example D.5 (Reference weight). Consider the same setup and notations as in Examples
D.2 and D.3, except that the minimax problem (D.25) is considered. In addition, let
D > 0 in this example.

Let η = (η1, η2)
′ and δ = (δ1, δ2)

′. Since it is required that η + δ ∈ Wcvx and η ∈
Wcvx, it must be that η2 = 1 − η1 and that 1 + (δ1 + δ2) = 1. Thus, δ2 = −δ1. Hence,
the restriction that D ≥ ∥δ∥2 can be rewritten as D ≥ (δ2

1 + δ2
2)

1
2 . Since D ≥ 0, this

restriction is equivalent to |δ1| ≤ D√
2
≡ D̃. Hence, the parameter space S3(B, D,η) can

be specialized in the following form in the current example:

S̃3(B, D̃, η1) = {(b1, b2, δ1) ∈ R3 : b2
1 + b2

2 ≤ B2,

|δ1| ≤ D̃,

γ1 = δ1 + η1 ∈ [0, 1],

γ1b1 + (1 − γ1)b2 = 0}.

(D.28)

Here, δ1 + η1 ∈ [0, 1] is the same as η + δ ∈ Wcvx in this example. To see this, note that
η + δ ∈ Wcvx requires η + δ ≥ 0q and (η + δ)′1q = 1. (η + δ)′1q = 1 is always satisfied
by the parameterization at the beginning of this example because (η+ δ)′1q = (η1 + 1−
η1) + (δ1 − δ1) = 1. η + δ ≥ 0q requires η1 + δ1 ≥ 0 and 1 − η1 − δ1 ≥ 0. Combining
these two inequality constraints gives the second last condition in the parameter space
(D.28). For the last condition, it follows directly from γ ′b = 0.

Note that (D.28) can be further simplified as follows. This is because |δ1| ≤ D̃ can
be written as −D̃ ≤ δ1 ≤ D̃. δ1 + η1 ∈ [0, 1] can be written as −η1 ≤ δ1 ≤ 1 − η1.
Combining both inequalities give max{−η1,−D̃} ≤ δ1 ≤ min{D̃, 1 − η1}.

Since D̃, η1 ≥ 0, let

S̃3(D̃, η1) =
{

δ1 ∈ R : −min{η1, D̃} ≤ δ1 ≤ min{D̃, 1 − η1}
}

. (D.29)

Using the derivation in (D.9) and (D.17) but with γ1 replaced by δ1 + η1, the maximum
misspecification can be written as

M(B, D̃, w1, η1) = B2 max
δ1∈S̃3(D̃,η1)

w2
1 − 2w1(δ1 + η1) + (δ1 + η1)

2

(δ1 + η1)2 + [1 − (δ1 + η1)]2
. (D.30)
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Let t ≡ δ1 + η1, γ
1
≡ −min{η1, D̃}+ η1 and γ1 ≡ min{D̃, 1 − η1}+ η1. Then, (D.30)

can be written as

M(B, D̃, w1, η1) = B2 max
t∈[γ1,γ1]

w2
1 − 2w1t + t2

t2 + (1 − t)2 = B2 max
t∈[γ1,γ1]

(w1 − t)2

t2 + (1 − t)2 . (D.31)

The above problem has the same structure as (D.17) except that the support on t is
different. It can be analyzed using a similar argument as in Example D.3. △
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